Temperature dependence of protein dynamics simulated with three different water modelsGlass, D. C., Krishnan, M., Nutt, D. R. and Smith, J. C. (2010) Temperature dependence of protein dynamics simulated with three different water models. Journal of Chemical Theory and Computation, 6 (4). pp. 1390-1400. ISSN 1549-9618
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1021/ct9006508 Abstract/SummaryThe effect of variation of the water model on the temperature dependence of protein and hydration water dynamics is examined by performing molecular dynamics simulations of myoglobin with the TIP3P, TIP4P, and TIP5P water models and the CHARMM protein force field at temperatures between 20 and 300 K. The atomic mean-square displacements, solvent reorientational relaxation times, pair angular correlations between surface water molecules, and time-averaged structures of the protein are all found to be similar, and the protein dynamical transition is described almost indistinguishably for the three water potentials. The results provide evidence that for some purposes changing the water model in protein simulations without a loss of accuracy may be possible.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |