Accessibility navigation

The effects of variation in snow properties on passive microwave snow mass estimation

Davenport, I., Sandells, M. and Gurney, R. (2012) The effects of variation in snow properties on passive microwave snow mass estimation. Remote Sensing of the Environment, 118 (1). pp. 161-175. ISSN 0034-4257

Text - Accepted Version
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.rse.2011.11.014


Estimating snow mass at continental scales is difficult, but important for understanding land-atmosphere interactions, biogeochemical cycles and the hydrology of the Northern latitudes. Remote sensing provides the only consistent global observations, butwith unknown errors. Wetest the theoretical performance of the Chang algorithm for estimating snow mass from passive microwave measurements using the Helsinki University of Technology (HUT) snow microwave emission model. The algorithm's dependence upon assumptions of fixed and uniform snow density and grainsize is determined, and measurements of these properties made at the Cold Land Processes Experiment (CLPX) Colorado field site in 2002–2003 used to quantify the retrieval errors caused by differences between the algorithm assumptions and measurements. Deviation from the Chang algorithm snow density and grainsize assumptions gives rise to an error of a factor of between two and three in calculating snow mass. The possibility that the algorithm performsmore accurately over large areas than at points is tested by simulating emission from a 25 km diameter area of snow with a distribution of properties derived from the snow pitmeasurements, using the Chang algorithm to calculate mean snow-mass from the simulated emission. The snowmass estimation froma site exhibiting the heterogeneity of the CLPX Colorado site proves onlymarginally different than that from a similarly-simulated homogeneous site. The estimation accuracy predictions are tested using the CLPX field measurements of snow mass, and simultaneous SSM/I and AMSR-E measurements.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Environmental Systems Science Centre
ID Code:25685
Uncontrolled Keywords:Snow mass; Snow grain size; Remote sensing; Passive microwave


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation