Accessibility navigation


From symmetry breaking to Poisson Point Process in 2D Voronoi Tessellations: the generic nature of hexagons

Lucarini, V. ORCID: https://orcid.org/0000-0001-9392-1471 (2008) From symmetry breaking to Poisson Point Process in 2D Voronoi Tessellations: the generic nature of hexagons. Journal of Statistical Physics, 130. pp. 1047-1062. ISSN 0022-4715

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

434kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

We bridge the properties of the regular triangular, square, and hexagonal honeycomb Voronoi tessellations of the plane to the Poisson-Voronoi case, thus analyzing in a common framework symmetry breaking processes and the approach to uniform random distributions of tessellation-generating points. We resort to ensemble simulations of tessellations generated by points whose regular positions are perturbed through a Gaussian noise, whose variance is given by the parameter α2 times the square of the inverse of the average density of points. We analyze the number of sides, the area, and the perimeter of the Voronoi cells. For all valuesα >0, hexagons constitute the most common class of cells, and 2-parameter gamma distributions provide an efficient description of the statistical properties of the analyzed geometrical characteristics. The introduction of noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α = 0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise withα <0.12. For all tessellations and for small values of α, we observe a linear dependence on α of the ensemble mean of the standard deviation of the area and perimeter of the cells. Already for a moderate amount of Gaussian noise (α >0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α >2, results converge to those of Poisson-Voronoi tessellations. The geometrical properties of n-sided cells change with α until the Poisson- Voronoi limit is reached for α > 2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established. This law allows for an easy link to the Lewis law for areas and agrees with exact asymptotic results. Finally, for α >1, the ensemble mean of the cells area and perimeter restricted to the hexagonal cells agree remarkably well with the full ensemble mean; this reinforces the idea that hexagons, beyond their ubiquitous numerical prominence, can be interpreted as typical polygons in 2D Voronoi tessellations.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:27132
Publisher:Springer

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation