L1-regularisation for ill-posed problems in variational data assimilationFreitag, M. A., Nichols, N. ORCID: https://orcid.org/0000-0003-1133-5220 and Budd, C. J. (2010) L1-regularisation for ill-posed problems in variational data assimilation. PAMM - Proceedings in Applied Mathematics and Mechanics, 10 (1). pp. 665-668. ISSN 1617-7061 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/pamm.201010324 Abstract/SummaryWe consider four-dimensional variational data assimilation (4DVar) and show that it can be interpreted as Tikhonov or L2-regularisation, a widely used method for solving ill-posed inverse problems. It is known from image restoration and geophysical problems that an alternative regularisation, namely L1-norm regularisation, recovers sharp edges better than L2-norm regularisation. We apply this idea to 4DVar for problems where shocks and model error are present and give two examples which show that L1-norm regularisation performs much better than the standard L2-norm regularisation in 4DVar.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |