Accessibility navigation


Unusual isotope effect in the reaction of chlorosilylene with trimethylsilane-1-d: Absolute rate studies and quantum chemical and Rice–Ramsperger–Kassel–Marcus calculations provide strong evidence for the involvement of an intermediate complex

Becerra, R., Boganov, S. E., Egorov, M. P., Krylova, I. V., Promyslov, V. M. and Walsh, R. (2012) Unusual isotope effect in the reaction of chlorosilylene with trimethylsilane-1-d: Absolute rate studies and quantum chemical and Rice–Ramsperger–Kassel–Marcus calculations provide strong evidence for the involvement of an intermediate complex. Journal of the American Chemical Society, 134 (25). pp. 10493-10501. ISSN 0002-7863

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/ja301924b

Abstract/Summary

Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1- silacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with trimethylsilane-1-d, Me3SiD, in the gas phase. The reaction was studied at total pressures up to 100 Torr (with and without added SF6) over the temperature range of 295−407 K. The rate constants were found to be pressure independent and gave the following Arrhenius equation: log[(k/(cm3 molecule−1 s−1)] = (−13.22 ± 0.15) + [(13.20 ± 1.00) kJ mol−1]/(RT ln 10). When compared with previously published kinetic data for the reaction of ClSiH with Me3SiH, kinetic isotope effects, kD/kH, in the range from 7.4 (297 K) to 6.4 (407 K) were obtained. These far exceed values of 0.4−0.5 estimated for a single-step insertion process. Quantum chemical calculations (G3MP2B3 level) confirm not only the involvement of an intermediate complex, but also the existence of a low-energy internal isomerization pathway which can scramble the D and H atom labels. By means of Rice−Ramsperger−Kassel−Marcus modeling and a necessary (but small) refinement of the energy surface, we have shown that this mechanism can reproduce closely the experimental isotope effects. These findings provide the first experimental evidence for the isomerization pathway and thereby offer the most concrete evidence to date for the existence of intermediate complexes in the insertion reactions of silylenes.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:29544
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation