Accessibility navigation


Experimental and modeled UV erthemal irradiance under overcast conditions: the role of cloud optical depth

Anton, M., Alados-Arboledas, L., Guerrero-Rascado, J. L., Costa, M. J., Chiu, J. C. and Olmo, F. J. (2012) Experimental and modeled UV erthemal irradiance under overcast conditions: the role of cloud optical depth. Atmospheric Chemistry and Physics, 12 (23). pp. 11723-11732. ISSN 1680-7316

[img]
Preview
Text (Open Access) - Published Version
· Please see our End User Agreement before downloading.

561kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/acp-12-11723-2012

Abstract/Summary

This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythe- mal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada, Spain, mainly for non-precipitating, overcast and relatively homogenous water clouds. Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD=10 to 0.25 for COD=50. In addition, these COD measurements were used as input in the LibRadtran radia tive transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22 %). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. The comparison revealed that the radiative transfer simulations were 8 % higher than the observations for clear-sky conditions. The rest of the bias (~14 %) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~ 0.93). A sensitive test showed that the main reason responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80 % of the overcast cases with a mean relative difference of 22 %.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:30210
Publisher:Copernicus Publications

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation