Arakawa A. 2004. The cumulus parameterization problem: Past,
present, and future. J. Clim. 17: 2493–2525.
Arakawa A, Schubert WH. 1974. Interaction of a cumulus cloud
ensemble with the large-scale environment. Part I. J. Atmos. Sci. 31:
674–701.
Bechtold P, K¨ohler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell
MJ, Vitart F, Balsamo G. 2008. Advances in simulating atmospheric
variability with the ECMWF model: From synoptic to decadal timescales.
Quart. J. Roy. Met. Soc. 134: 1337–1351.
Bretherton CS,McCaa JR, Grenier H. 2004. A new parameterization for
shallow cumulus convection and its application to marine subtropical
cloud-topped boundary layers. Part I: Description and 1D results.
Mon. Wea. Rev. 132: 864–882.
Bretherton CS, Smolarkiewicz PK. 1997. Gravity waves, compensating
subsidence and detrainment around cumulus clouds. J. Atmos. Sci.
46: 740–759.
Cohen BG, Craig GC. 2004. The response time of a convective cloud
ensemble to a change in forcing. Quart. J. Roy. Meteor. Soc. 130:
933–944.
Cohen BG, Craig GC. 2006. Fluctuations in an equilibrium convective
ensemble. Part II: Numerical experiments. J. Atmos. Sci. 63: 2005–
2015.
Daleu CL, Woolnough SJ, Plant RS. 2012. Cloud-resolving model
simulations with one and two-way couplings via the weaktemperature
gradient approximation. To appear in: J. Atmos. Sci. .
Davies L. 2008. Self organisation of convection as a mechanism for
memory. PhD thesis, Department of Meteorology, University of
Reading.
Davies L, Plant RS, Derbyshire SH. 2009. A simple model of convection
with memory. J. Geophys. Res. 114: D17 202.
Fabry F. 2006. The spatial variability of moisture in the boundary layer
and its effect on convection initiation: Project-long characterisation.
Mon. Wea. Rev. 134: 79–91.
Gerard L, Geleyn JF. 2005. Evolution of a subgrid deep convection
parametrization in a limited-area model with increasing resolution.
Quart. J. R. Meteorol. Soc. 131: 2293–2312.
Grandpeix JY, Lafore JP. 2010. A density current parameterization
coupled to emanuel’s convection scheme. Part I: The models. J.
Atmos. Sci. 67: 881–897.
Grant ALM, Brown AR. 1999. A similarity hypothesis for shallowcumulus
transports. Quart. J. Roy. Met. Soc. 125: 1913–1936.
Gray MEB, Petch J, Derbyshire SH, Brown AR, Lock AP, Swann HA,
Brown PRA. 2001. Version 2.3 of the Met Office Large Eddy Model:
Part II. Scientific documentation. Technical report, Met Office.
Gregory D. 1997. The mass flux approach to the parameterization
of deep convection. In: The Physics and Parameterization of
Moist Atmospheric Convection, Smith RK (ed), Kluwer Academic
Publishers, pp. 297–319.
Guichard F, Petch JC, Redelsperger JL, Bechtold P, ans S Cheinet
JPC, Grabowski W, Grenier H, Jones CG, K¨ohler M, Piriou JM,
Tailleux R, Tomasini M. 2004. Modelling the diurnal cycle of deep
precipitating convection over land with cloud-resolving models and
single-column models. Quart. J. Roy. Meteor. Soc. 130: 3139–3172.
Jones TR. 2010. Quantifying the limits of convective parameterizations:
A statistical characterization of simulated cumulus convection.
Master’s thesis, Department of Atmospheric Science, Colorado State
University.
Jones TR, Randall DA. 2009. Quantifying the limits of convective
parameterizations. J. Geophys. Res. 116: D08 210.
Kain JS. 2004. The Kain–Fritsch convective parameterization: An
update. J. Appl. Meteorol. 43: 170–181.
Khairoutdinov M, Randall D. 2006. High-resolution simulation of
shallow-to-deep convection transition over land. J. Atmos. Sci. 63:
3421–3436.
Kuang Z. 2008. Modeling the interaction between cumulus convection
and linear gravity waves using a limited-domain cloud systemresolving
model. J. Atmos. Sci. 65: 576–591.
LeMone MA, Zipser EJ, Trier SB. 1998. The role of environmental
shear and thermodynamic conditions in determining the structure and
evolution of mesoscale convective systems during TOGA COARE. J.
Atmos. Sci 55: 3493–3518.
Leoncini G, Plant RS, Gray SL, Clark PA. 2010. Perturbation growth
at the convective scale for CSIP IOP18. Q. J. R. Meteorol. Soc. 136:
653–670.
Manabe S, Smagorinsky JS, Strickler RF. 1965. A similarity hypothesis
for shallow-cumulus transports. Mon. Wea. Rev. 93: 769–798.
Mapes B, Neale R. 2011. Parameterizing convective organization.
Journal of Advances in Modeling Earth Systems 3(6).
Mapes BE. 1997. Equilibrium vs. activation controls on large–
scale variations of tropical deep convection. In: The Physics and
Parameterization of Moist Atmospheric Convection, Smith RK (ed),
Kluwer Academic Publishers, pp. 321–358.
Marsham JH, Parker DJ. 2006. Secondary initiation of multiple bands of
cumulonimbus over southern Britain. Part II: Dynamics of secondary
initiation. Quart. J. Roy. Meteor. Soc. 132: 1053–1072.
Pan DM, Randall DA. 1998. A cumulus parameterization with
prognostic closure. Quart. J. R. Meteorol. Soc. 124: 949–981.
Parodi A, Emanuel K. 2009. A theory for buoyancy and velocity scales
in deep moist convection. J. Atmos. Sci. 66: 3449–3463.
Petch JC. 2006. Sensitivity studies of developing convection in a cloudresolving
model. Quart. J. Roy. Meteor. Soc. 132: 345–358.
Piriou JM, Redelsperger JL, amd J P Lafore JFG, Guichard F. 2007. An
approach for convective parameterization with memory: Separating
microphysics and transport in grid-scale equations. J. Atmos. Sci. 64:
4127–4139.
Raymond D, Zeng X. 2005. Modelling tropical atmospheric convection
in the context of the weak temperature gradient approximation.
Quart. J. R. Meteorol. Soc. 131: 1301–1320.
Rio C, Hourdin F, Grandpeix JY, Lafore JP. 2009. Shifting the diurnal
cycle of parameterized deep convection over land. Geophys. Res.
Lett. 36: L07 809.
Robe FR, Emanuel KA. 2001. The effect of vertical wind shear on
radiative-convective equilibrium states. J. Atmos. Sci. 58: 1427–
1445.
Rogers RR, Yau MK. 1989. A short course in cloud physics.
Butterworth-Heinemann, 3rd edn.
Rotunno R, Klemp JB, Weisman ML. 1988. A theory for strong, longlived
squall lines. J. Atmos, Sci. 45: 463–485.
Shutts GJ, Gray MEB. 1994. A numerical modelling study of the
geostrophic adjustment process following deep convection. Quart. J.
Roy. Meteor. Soc. 120: 1145–1178.
Shutts GJ, Gray MEB. 1999. Numerical simulations of convective
equilibrium under prescribed forcing. Quart. J. R. Meteorol. Soc 125:
2767–2787.
Sobel AH, Bretherton CS. 2000. The cumulus parameterization
problem: Past, present, and future. J. Clim. 13: 4378–4392.
Stirling AJ, Petch JC. 2004. The impacts of spatial variability on the
development of convection. Quart. J. Roy. Meteor. Soc. 130: 3189–
3206.
Tompkins AM. 2001. Organisation of tropical convection in low vertical
wind shears: The role of cold pools. J. Atmos. Sci. 58: 1650–1672.
Vallis GK, Shutts GJ, Gray MEB. 1997. Balanced mesoscale motion
and stratified turbulence forced by convection. Quart. J. Roy. Meteor.
Soc. 123: 1621–1652.
Wagner TM, Graf HF. 2010. An ensemble cumulus convection
parameterization with explicit cloud treatment. J. Atmos. Sci. 67:
3854–3869.
Yang GY, Slingo J. 2001. The diurnal cycle in the tropics. Mon. Wea.
Rev. 129: 784–801.
Yano JI, Plant RS. 2012. Finite departure from convective quasiequilibrium:
Periodic cycle and discharge-recharge mechanism.
Quart. J. Roy. Met. Soc. 128: 626–637.
Zhang Y, Klein SA. 2010. Mechanisms affecting the transition from
shallow to deep convcetion over land: Inferences from observations
of the diurnal cycle collected at the ARM Souther Great Plains site.
J. Atmos. Sci. 67: 2943–2958.
Zimmer M, Graig GC, Wernli H, Keil C. 2011. Classification of
precipitation events with a convective response timescale. Geophys.
Res. Lett. 38: L05 802.