Accessibility navigation

Connecting mean field models of neural activity to EEG and fMRI data

Bojak, I. ORCID:, Oostendorp, T. F., Reid, A. T. and Kotter, R. (2010) Connecting mean field models of neural activity to EEG and fMRI data. Brain Topography, 23 (2). pp. 139-149. ISSN 1573-6792

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s10548-010-0140-3


Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.

Item Type:Article
Divisions:Interdisciplinary Research Centres (IDRCs) > Centre for Integrative Neuroscience and Neurodynamics (CINN)
ID Code:31443
Uncontrolled Keywords:Mean field model ! Volume conductor model ! Multimodal imaging ! EEG ! fMRI BOLD

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation