1. Borgnat P, Fleury E, Guillaume J-L, Magnien C, et al. (2008) Evolving
Networks. In: NATO ASI Mining Massive Data Sets for Security IOS Press. pp
198–204.
2. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,
development and function of complex brain networks. Trends Cogn Sci 8:
418–425.
3. Newman MEJ (2003) The Structure and Function of Complex Networks. SIAM
Review 45: 167–256.
4. Strogatz SH (2001) Exploring complex networks. Nature 410: 268–276.
5. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.
6. Watts DJ (2004) The ‘‘New’’ Science of Networks. Annu Rev Sociol 30:
243–270.
7. Milgram S (1967) The Small World Problem. Psychology Today 2: 60–67.
8. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional
networks. PLoS Comput Biol 3: e17.
9. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,
low-frequency, small-world human brain functional network with highly
connected association cortical hubs. J Neurosci 26: 63–72.
10. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006)
Adaptive reconfiguration of fractal small-world human brain functional
networks. Proc Natl Acad Sci U S A 103: 19518–19523.
11. Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, et al. (2010)
Dynamic reconfiguration of human brain networks during learning. Proc Natl
Acad Sci U S A 108: 7641–7646.
12. Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal
synchrony. Cereb Cortex 18: 2891–2901.
13. Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological
characterization of in vitro neuronal networks. Phys Rev E Stat Nonlin Soft
Matter Phys 66: 021905.
14. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52: 1059–1069.
15. Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW,
et al. (2010) Efficient Physical Embedding of Topologically Complex
Information Processing Networks in Brains and Computer Circuits. PLoS
Comput Biol 6: e1000748.
16. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.
Nature 393: 440–442.
17. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative
method for determining canonical network equivalence. PLoS One 3: e0002051.
18. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in
brain networks. PLoS One 2: e1049.
19. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world
networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:
92–99.
20. de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, et
al. (2009) Functional neural network analysis in frontotemporal dementia and
Alzheimer’s disease using EEG and graph theory. BMC Neurosci 10: 101.
21. Chavez M, Valencia M, Latora V, Martinerie J (2010) Complex networks: new
trends for the analysis of brain connectivity. Int J Bifurcat Chaos 20: 1677–1686.
22. Douw L, van Dellen E, Baayen JC, Klein M, Velis DN, et al. (2010) The
lesioned brain: still a small-world? Front 4: 174.
23. Liu Y, Liang M, Zhou Y, He Y, Hao Y, et al. (2008) Disrupted small-world
networks in schizophrenia. Brain 131: 945–961.
24. van Pelt J, Vajda I, Wolters PS, Corner MA, Ramakers GJ (2005) Dynamics and
plasticity in developing neuronal networks in vitro. Prog Brain Res 147: 173–188.
25. Marom S, Shahaf G (2002) Development, learning and memory in large
random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys
35: 63–87.
26. Ayali A, Fuchs E, Zilberstein Y, Robinson A, Shefi O, et al. (2004) Contextual
regularity and complexity of neuronal activity: from stand-alone cultures to taskperforming
animals. Complex 9: 25–32.
27. Huettner JE, Baughman RW (1986) Primary culture of identified neurons from
the visual cortex of postnatal rats. J Neurosci 6: 3044–3060.
28. Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH (2002)
Physiological effects of sustained blockade of excitatory synaptic transmission
on spontaneously active developing neuronal networks–an inquiry into the
reciprocal linkage between intrinsic biorhythms and neuroplasticity in early
ontogeny. Neurosci Biobehav Rev 26: 127–185.
29. Jimbo Y, Tateno T, Robinson HP (1999) Simultaneous induction of pathwayspecific
potentiation and depression in networks of cortical neurons. Biophys J
76: 670–678.
30. Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci
21: 8782–8788.
31. Bull L, Uroukov IS (2008) Towards Neuronal Computing: Simple Creation of
Two Logic Functions in 3D Cell Cultures using Multi-Electrode Arrays.
Unconventional Computing 4: 143–154.
32. Esposti F, Signorini MG, Potter SM, Cerutti S (2009) Statistical long-term
correlations in dissociated cortical neuron recordings. IEEE Trans Neural Syst
Rehabil Eng 17: 364–369.
33. Shahaf G, Eytan D, Gal A, Kermany E, Lyakhov V, et al. (2008) Order-based
representation in random networks of cortical neurons. PLoS Comput Biol 4:
e1000228.
34. Srinivas KV, Jain R, Saurav S, Sikdar SK (2007) Small-world network topology
of hippocampal neuronal network is lost, in an in vitro glutamate injury model of
epilepsy. Eur J Neurosci 25: 3276–3286.
35. Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of
cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl
Acad Sci U S A 104: 10240–10245.
36. Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated
cortical networks show spontaneously correlated activity patterns during in vitro
development. Brain Res 1093: 41–53.
37. le Feber J, Stegenga J, Rutten WL (2010) The effect of slow electrical stimuli to
achieve learning in cultured networks of rat cortical neurons. PLoS One 5:
e8871.
38. Chiappalone M, Massobrio P, Martinoia S (2008) Network plasticity in cortical
assemblies. Eur J Neurosci 28: 221–237.
39. Bettencourt LM, Stephens GJ, Ham MI, Gross GW (2007) Functional structure
of cortical neuronal networks grown in vitro. Phys Rev E Stat Nonlin Soft
Matter Phys 75: 021915.
40. Xydas D, Norcott DJ, Warwick K, Whalley BJ, Nasuto SJ, et al. (2008)
Architecture for Living Neuronal Cell Control of a Mobile Robot. Proc
European Robotics Symposium EUROS08: 23–31.
41. Warwick K, Xydas D, Nasuto SJ, Becerra VM, Hammond MW, et al. (2010)
Controlling a Mobile Robot with a Biological Brain. Defence Science Journal
60: 5–14.
42. Bakkum DJ, Chao ZC, Potter SM (2008) Spatio-temporal electrical stimuli
shape behavior of an embodied cortical network in a goal-directed learning task.
J Neural Eng 5: 310–323.
43. Novellino A, D’Angelo P, Cozzi L, Chiappalone M, Sanguineti V, et al. (2007)
Connecting neurons to a mobile robot: an in vitro bidirectional neural interface.
Comput Intell Neurosci. 12725 p.
44. Wagenaar DA, Pine J, Potter SM (2006a) An extremely rich repertoire of
bursting patterns during the development of cortical cultures. BMC Neurosci 7:
11.
45. Potter SM, DeMarse TB (2001) A new approach to neural cell culture for longterm
studies. J Neurosci Methods 110: 17–24.
46. Eytan D, Marom S (2006) Dynamics and effective topology underlying
synchronization in networks of cortical neurons. J Neurosci 26: 8465–8476.
47. Vajda I, van Pelt J, Wolters P, Chiappalone M, Martinoia S, et al. (2008) Lowfrequency
stimulation induces stable transitions in stereotypical activity in
cortical networks. Biophys J 94: 5028–5039.
48. Sweeney-Reed CM, Nasuto SJ (2007) A novel approach to the detection of
synchronisation in EEG based on empirical mode decomposition. J Comput
Neurosci 23: 79–111.
49. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of
neurophysiological signals. Prog Neurobiol 77: 1–37.
50. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex
networks. Nature 406: 378–382.
51. Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world
networks. Proc Natl Acad Sci U S A 97: 11149–11152.
52. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, et al. (2009)
GABAergic hub neurons orchestrate synchrony in developing hippocampal
networks. Science 326: 1419–1424.
53. Ramakers GJ, van Galen H, Feenstra MG, Corner MA, Boer GJ (1994)
Activity-dependent plasticity of inhibitory and excitatory amino acid transmitter
systems in cultured rat cerebral cortex. Int J Dev Neurosci 12: 611–621.
54. Cherniak C (1994) Component placement optimization in the brain. J Neurosci
14: 2418–2427.
55. Buzsaki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron Diversity series:
Circuit complexity and axon wiring economy of cortical interneurons. Trends
Neurosci 27: 186–193.
56. Gullo F, Maffezzoli A, Dossi E, Wanke E (2009) Short-latency cross- and
autocorrelation identify clusters of interacting cortical neurons recorded from
multi-electrode array. J Neurosci Methods 181: 186–198.
57. Voigt T, Opitz T, de Lima AD (2005) Activation of early silent synapses by
spontaneous synchronous network activity limits the range of neocortical
connections. J Neurosci 25: 4605–4615.
58. Rubinov M, Sporns O, van Leeuwen C, Breakspear M (2009) Symbiotic
relationship between brain structure and dynamics. BMC Neurosci 10: 55.
59. Maeda E, Robinson HP, Kawana A (1995) The mechanisms of generation and
propagation of synchronized bursting in developing networks of cortical
neurons. J Neurosci 15: 6834–6845.
60. Kwok HF, Jurica P, Raffone A, van Leeuwen C (2007) Robust emergence of
small-world structure in networks of spiking neurons. Cogn Neurodyn 1: 39–51.
61. Spencer MC, Downes JH, Xydas D, Hammond MW, Becerra VM, et al. (2012)
Multiscale evolving complex network model of functional connectivity in
neuronal cultures. IEEE Trans Biomed Engineering 59: 30–34 Epub 2011.
62. Wright JJ (2011) Attractor dynamics and thermodynamic analogies in the
cerebral cortex: synchronous oscillation, the background EEG, and the
regulation of attention. Bull Math Biol 73: 436–457 Epub 2010.
63. Kamioka H, Maeda E, Jimbo Y, Robinson HP, Kawana A (1996) Spontaneous
periodic synchronized bursting during formation of mature patterns of
connections in cortical cultures. Neurosci Lett 206: 109–112.
64. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys
Rev Lett 87: 198701.
65. Ham MI, Bettencourt LM, McDaniel FD, Gross GW (2008) Spontaneous
coordinated activity in cultured networks: analysis of multiple ignition sites,
primary circuits, and burst phase delay distributions. J Comput Neurosci 24:
346–357.
66. Lawrence JJ (2008) Cholinergic control of GABA release: emerging parallels
between neocortex and hippocampus. Trends Neurosci 31: 317–327.
67. Wagenaar DA, DeMarse TB, Potter SM (2005) MeaBench: A toolset for multielectrode
data acquisition and on-line analysis. In: Proc 2nd Int IEEE EMBS
Conf Neural Eng Arlington, Virginia, United States. pp 518–521.
68. Hammond MW, Marshall S, Downes JH, Xydas D, Nasuto SJ, et al. (2008)
Robust Methodology For the Study of Cultured Neuronal Networks on MEAs.
In: Proc MEA Meeting 2008. BIOPRO ed. Stuttgart: BIOPRO Baden-
Wu¨rttemberg GmbH. pp 293–294.
69. van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of
different size and connectivity density using graph theory. PLoS 5: e13701.
70. Knoblich U, Sit J (2004) Matlab scripts for MEA Network Topology
Characterization, project 9.29. Available: http://web.mit.edu/9.29/www/
neville_jen/connectivity/MEA2.htm Accessed: July 2008.
71. Lamb TJ, Graham AL, Petrie A (2008) t Testing the Immune System. Immunity
28: 288–292.
72. Whitley E, Ball J (2002) Statistics review 4: sample size calculations. Crit Care 6:
335–341.
73. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.
Nature 393: 440–442.
74. Humphries MD, Gurney K (2008) Networks ‘Small-World-Ness’ A Quantitative
Method for Determining Canonical Network Equivalence. PLoS ONE 3: e2051.
Small-World Network Emerges in Cultured Neurons
PLoS Computational