Accessibility navigation


Volatile isoprenoid emissions from plastid to planet

Harrison, S. P., Morfopoulos, C., Srikanta Dani, K.G., Prentice, I. C., Arneth, A., Atwell, B. J., Barkley, M. P., Leishman, M. R., Loreto, F., Medlyn, B. E., Niinemets, U., Possell, M., Penuelas, J. and Wright, I. J. (2013) Volatile isoprenoid emissions from plastid to planet. New Phytologist, 197 (1). pp. 49-57. ISSN 1469-8137

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/nph.12021

Abstract/Summary

Approximately 1–2% of net primary production by land plants is re-emitted to the atmosphere as isoprene and monoterpenes. These emissions play major roles in atmospheric chemistry and air pollution–climate interactions. Phenomenological models have been developed to predict their emission rates, but limited understanding of the function and regulation of these emissions has led to large uncertainties in model projections of air quality and greenhouse gas concentrations. We synthesize recent advances in diverse fields, from cell physiology to atmospheric remote sensing, and use this information to propose a simple conceptual model of volatile isoprenoid emission based on regulation of metabolism in the chloroplast. This may provide a robust foundation for scaling up emissions from the cellular to the global scale.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:32224
Publisher:Wiley

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation