Accessibility navigation


Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers

Owens, M. J. ORCID: https://orcid.org/0000-0003-2061-2453, Crooker, N. U. and Lockwood, M. ORCID: https://orcid.org/0000-0002-7397-2172 (2013) Solar origin of heliospheric magnetic field inversions: evidence for coronal loop opening within pseudostreamers. Journal of Geophysical Research: Space Physics, 118 (5). pp. 1868-1879. ISSN 2169-9402

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/jgra.50259

Abstract/Summary

The orientation of the heliospheric magnetic field (HMF) in near‒Earth space is generally a good indicator of the polarity of HMF foot points at the photosphere. There are times, however, when the HMF folds back on itself (is inverted), as indicated by suprathermal electrons locally moving sunward, even though they must ultimately be carrying the heat flux away from the Sun. Analysis of the near‒Earth solar wind during the period 1998–2011 reveals that inverted HMF is present approximately 5.5% of the time and is generally associated with slow, dense solar wind and relatively weak HMF intensity. Inverted HMF is mapped to the coronal source surface, where a new method is used to estimate coronal structure from the potential‒field source‒surface model. We find a strong association with bipolar streamers containing the heliospheric current sheet, as expected, but also with unipolar or pseudostreamers, which contain no current sheet. Because large‒scale inverted HMF is a widely accepted signature of interchange reconnection at the Sun, this finding provides strong evidence for models of the slow solar wind which involve coronal loop opening by reconnection within pseudostreamer belts as well as the bipolar streamer belt. Occurrence rates of bipolar‒ and pseudostreamers suggest that they are equally likely to result in inverted HMF and, therefore, presumably undergo interchange reconnection at approximately the same rate. Given the different magnetic topologies involved, this suggests the rate of reconnection is set externally, possibly by the differential rotation rate which governs the circulation of open solar flux.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:32614
Publisher:American Geophysical Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation