Electrochemical sensing of 2D condensation in amyloid peptidesKurzatkowska, K., Ostatná, V., Hamley, I. W. ORCID: https://orcid.org/0000-0002-4549-0926, Doneux, T. and Palecek, E. (2013) Electrochemical sensing of 2D condensation in amyloid peptides. Electrochimica Acta, 106. pp. 43-48. ISSN 0013-4686
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.electacta.2013.05.057 Abstract/SummaryThe interfacial behavior of the model amyloid peptide octamer YYKLVFFC (peptide 1) and two other amyloid peptides YEVHHQKLVFF (peptide 2) and KKLVFFA (peptide 3) at the metal|aqueous solution interface was studied by voltammetric and constant current chronopotentiometric stripping (CPS). All three peptides are adsorbed in a wide potential range and exhibit different interfacial organizations depending on the electrode potential. At the least negative potentials, chemisorption of peptide 1 occurs through the formation of a metal sulfur bond. This bond is broken close to −0.6 V. The peptide undergoes self-association at more negative potentials, leading to the formation of a “pit” characteristic of a 2D condensed film. Under the same conditions the other peptides do not produce such a pit. Formation of the 2D condensed layer in peptide 1 is supported by the time, potential and temperature dependences of the interfacial capacity and it is shown that presence of the 2D layer is reflected by the peptide CPS signals due to the catalytic hydrogen evolution. The ability of peptide 1 to form the potential-dependent 2D condensed layer has been reported neither for any other peptide nor for any protein molecule. This ability might be related to the well-known oligomerization and aggregation of Alzheimer amyloid peptides.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |