Accessibility navigation


FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm

Hanappe, P., Beurivé, A., Laguzet, F., Steels, L., Bellouin, N. ORCID: https://orcid.org/0000-0003-2109-9559, Boucher, O., Yamazaki, Y. H., Aina, T. and Allen, M. (2011) FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm. Geoscientific Model Development, 4 (3). pp. 835-844. ISSN 1991-9603

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/gmd-4-835-2011

Abstract/Summary

We have optimised the atmospheric radiation algorithm of the FAMOUS climate model on several hardware platforms. The optimisation involved translating the Fortran code to C and restructuring the algorithm around the computation of a single air column. Instead of the existing MPI-based domain decomposition, we used a task queue and a thread pool to schedule the computation of individual columns on the available processors. Finally, four air columns are packed together in a single data structure and computed simultaneously using Single Instruction Multiple Data operations. The modified algorithm runs more than 50 times faster on the CELL’s Synergistic Processing Elements than on its main PowerPC processing element. On Intel-compatible processors, the new radiation code runs 4 times faster. On the tested graphics processor, using OpenCL, we find a speed-up of more than 2.5 times as compared to the original code on the main CPU. Because the radiation code takes more than 60% of the total CPU time, FAMOUS executes more than twice as fast. Our version of the algorithm returns bit-wise identical results, which demonstrates the robustness of our approach. We estimate that this project required around two and a half man-years of work.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:34610
Publisher:European Geosciences Union

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation