Accessibility navigation

Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments

Mann, J. A.L., Chiu, J. C., Hogan, R. J., O'Connor, E. J., l'Ecuyer, T. S., Stein, T. H. M. ORCID: and Jefferson, A. (2014) Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. Journal of Geophysical Research: Atmospheres, 119 (7). pp. 4136-4148. ISSN 2169-8996

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/2013JD021339


We have extensively evaluated the response of cloud-base drizzle rate (Rcb; mm day–1) in warm clouds to liquid water path (LWP; g m–2) and to cloud condensation nuclei (CCN) number concentration (NCCN; cm–3), an aerosol proxy. This evaluation is based on a 19-month long dataset of Doppler radar, lidar, microwave radiometers and aerosol observing systems from the Atmospheric Radiation Measurement (ARM) Mobile Facility deployments at the Azores and in Germany. Assuming 0.55% supersaturation to calculate NCCN, we found a power law , indicating that Rcb decreases by a factor of 2–3 as NCCN increases from 200 to 1000 cm–3 for fixed LWP. Additionally, the precipitation susceptibility to NCCN ranges between 0.5 and 0.9, in agreement with values from simulations and aircraft measurements. Surprisingly, the susceptibility of the probability of precipitation from our analysis is much higher than that from CloudSat estimates, but agrees well with simulations from a multi-scale high-resolution aerosol-climate model. Although scale issues are not completely resolved in the intercomparisons, our results are encouraging, suggesting that it is possible for multi-scale models to accurately simulate the response of LWP to aerosol perturbations.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:36308
Publisher:American Geophysical Union

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation