(1) Y. Hayashi, K. Nagai, K. Ito, S.J. Nasuto, R.C.V.
Loureiro, and W.S. Harwin: “A Feasible Study of
EEG-driven Assistive Robotic System for Stroke
Rehabilitation”, Proc. of IEEE Int. Conf. on
Biomedical Robotics and Biomechatronics, pp.
1733-1739, 2012.
(2) R.C.V. Loureiro, W.S. Harwin, K. Nagai and
M. Johnson: “Advances in upper limb stroke
rehabilitation: a technology push”, Med. Biol. Eng.
Comput. , Vol. 49, pp. 1103-1118, 2011.
(3) W.S. Harwin, et. al.: “The GENTLE/S Project: A
New Method of Delivering Neuro-Rehabilitation”,
Proc. of Association for the Advancement of
Assistive Technology in Europe, Vol. 10, pp. 36-41,
2001.
(4) R.C.V. Loureiro, et. al.: “Upper Limb Mediated
Stroke Therapy - GENTLE/s Approach”, Special
Issue on Rehabilitation Robotics, J. of Autonomous
Robots, Vol. 15, No. 1, pp. 35-51, 2003.
(5) K. Nagai, Y. Kojima, S. Yonemoto, T. Okubo,
R.C.V. Loureiro and W.S. Harwin: “Structural
Design of an Escort Type Rehabilitation Robot for
Post-Stroke Therapies of Upper-Limb,” Proc. of
2007 IEEE Int. Conf. on Rehabilitation Robotics,
pp. 1121-1128, 2007.
(6) S. Haddain, A. Albu-Schaffer, M. Frommberger,
J. Rossmann and G. Hirzinger: “The “DLR
Crash Report”: Towards a Standard Crash-Testing
Protocol for Robot Safety - Part I: Results”, in Proc.
of IEEE Int. Conf. on Robotics and Automation,
Kobe, pp. 272-279, 2009.
(7) S. Haddain, A. Albu-Schaffer, M. Frommberger,
J. Rossmann and G. Hirzinger: “The “DLR crash
report” Towards a Standard Crash-Testing Protocol
for Robot Safety - Part II: Discussions”, in Proc. of
IEEE Int. Conf. on Robotics and Automation, Kobe,
pp. 280-287, 2009.
(8) G.A. Pratt and M.M. Williamson: “Series Elastic
Actuator”, Proc. of IEEE Int. Conf. on Intelligent
Robots and Systems, pp. 339-406, 1995.
(9) M. Zinn, O. Khatib, B. Roth and J. Salisbury:
“Large Workspace Haptic Devices - A New Actuation
Approach,” Proc. of Symp. on Haptic Interfaces
for Virtual Environments and Teleoperator Systems,
pp. 185-192, 2008.
(10) K. Nagai, Y. Ikegami, R.C.V. Loureiro and
W.S. Harwin: “Proposal of an Admittance
Enhanced Redundant Joint Mechanism to Improve
Backdrivability”, Proc. of IEEE/ASME Int. Conf.
on Advanced Intelligent Mechatronics, pp. 504-
509, 2008.
(11) Y. Ikegami, K. Nagai, R.C.V. Loureiro and W.S.
Harwin: “Design of Redundant Drive Joint with
Adjustable Stiffness and Damping Mechanism to
Improve Joint Admittance”, Proc. of IEEE Int.
Conf. on Rehabilitation Robotics, pp. 202-210,
2009.
(12) K. Nagai, Y. Shiigi, Y. Ikegami, R.C.V. Loureiro
and W.S. Harwin: “Impedance Control of Redundant
Drive Joints with Double Actuation”, Proc.
of IEEE Int. Conf. on Robotics and Automation,
pp.1528-1534, 2009.
(13) K. Nagai, Y. Dake, Y. Shiigi, R.C.V. Loureiro and
W.S. Harwin: “Design of Redundant Drive Joints
with Double Actuation Using Springs in the Second
Actuator to Avoid Excessive Active Torques”, Proc.
of IEEE Int. Conf. on Robotics and Automation, pp.
805-812, 2010.
(14) Y. Hayashi, K. Nagai, K. Ito, S.J. Nasuto,
R.C.V. Loureiro, and W.S. Harwin: “Analysis
of EEG Signal to Detect Motor Command
Generation towards Stroke Rehabilitation”, Proc. of
International Conference on NeuroRehabilitation,
pp. 569-573, 2012.