Accessibility navigation

Evaluating the ability of process based models to project sea-level change

Church, J. A., Monselesan, D., Gregory, J. M. and Marzeion, B. (2013) Evaluating the ability of process based models to project sea-level change. Environmental Research Letters, 8. 014051. ISSN 1748-9326

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1088/1748-9326/8/1/014051


We evaluate the ability of process based models to reproduce observed global mean sea-level change. When the models are forced by changes in natural and anthropogenic radiative forcing of the climate system and anthropogenic changes in land-water storage, the average of the modelled sea-level change for the periods 1900–2010, 1961–2010 and 1990–2010 is about 80%, 85% and 90% of the observed rise. The modelled rate of rise is over 1 mm yr−1 prior to 1950, decreases to less than 0.5 mm yr−1 in the 1960s, and increases to 3 mm yr−1 by 2000. When observed regional climate changes are used to drive a glacier model and an allowance is included for an ongoing adjustment of the ice sheets, the modelled sea-level rise is about 2 mm yr−1 prior to 1950, similar to the observations. The model results encompass the observed rise and the model average is within 20% of the observations, about 10% when the observed ice sheet contributions since 1993 are added, increasing confidence in future projections for the 21st century. The increased rate of rise since 1990 is not part of a natural cycle but a direct response to increased radiative forcing (both anthropogenic and natural), which will continue to grow with ongoing greenhouse gas emissions

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
ID Code:38323
Publisher:Institute of Physics

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation