Adamson, D. S., Belcher, S. E., Hoskins, B. J., and Plant, R. S. (2006). Boundary-layer friction in
midlatitude cyclones. Q. J. R. Meteorol. Soc., 132, 101–124.
Ahmadi-Givi, F., Craig, G. C., and Plant, R. S. (2004). The dynamics of a midlatitude cyclone with
very strong latent-heat release. Q. J. R. Meteorol. Soc., 130, 295–323.
Anthes, R. A. and Keyser, D. (1979). Tests of a fine-mesh model over Europe and the United States.
Mon. Weather Rev., 107, 963–984.
Beare, R. J. (2007). Boundary layer mechanisms in extratropical cyclones. Q. J. R. Meteorol. Soc.,
133, 503–515.
Beare, R. J., MacVean, M. K., Holtslag, A. A. M., Cuxart, J., Esau, I., Golaz, J.-C., Jimenez, M. A.,
Khairoutdinov, M., Kosovic, B., Lewellen, D., Lund, T. S., Lundquist, J. K., McCabe, A., Moene,
A. F., Noh, Y., Raasch, S., and Sullivan, P. (2006). An intercomparison of large-eddy simulations of
the stable boundary layer. Boundary-Layer Meteorol., 118, 247–272.
Beljaars, A. C. M. and Viterbo, P. (1998). Role of the boundary layer in a numerical weather prediction
model. In A. A. M. Holtslag and P. G. Duynkerke, editors, Clear and Cloudy Boundary Layers, pages
287–304, Royal Netherlands Academy of Arts and Sciences, Amsterdam.
Boutle, I. A. (2009). Boundary-Layer Processes in Mid-latitude Cyclones. Ph.D. thesis, University
of Reading. http://www.met.rdg.ac.uk/phdtheses/Boundary Layer Processes in Mid-latitude Cyclones.
pdf.
Boutle, I. A., Beare, R. J., Belcher, S. E., and Plant, R. S. (2007). A note on boundary-layer friction
in baroclinic cyclones. Q. J. R. Meteorol. Soc., 133, 2137–2141.
Boutle, I. A., Beare, R. J., Belcher, S. E., Brown, A. R., and Plant, R. S. (2010). The moist boundary
layer under a mid-latitude weather system. Boundary-Layer Meteorol., 134, 367–386.
Brown, A. R., Beare, R. J., Edwards, J. M., Lock, A. P., Keogh, S. J., Milton, S. F., and Walters, D. N.
(2008). Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction
model. Boundary-Layer Meteorol., 128, 117–132.
Card, P. A. and Barcilon, A. (1982). The Charney stability problem with a lower Ekman layer. J.
Atmos. Sci., 39, 2128–2137.
Davis, C. A. and Emanuel, K. A. (1991). Potential vorticity diagnostics of cyclogenesis. Mon. Weather
Rev., 119, 1929–1953.
Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1, 33–52.
Farrell, B. (1985). Transient growth of damped baroclinic waves. J. Atmos. Sci., 42, 2718–2727.
Pedlosky, J. (1979). Geophysical Fluid Dynamics. Springer, New York.
Plant, R. S. and Belcher, S. E. (2007). Numerical simulation of baroclinic waves with a parameterized
boundary layer. J. Atmos. Sci., 64, 4383–4399.
Shapiro, M. A. and Keyser, D. (1990). Fronts, jet streams and the tropopause. In Extratropical
Cyclones: The Erik Palm�en Memorial Volume, pages 167–191. Amer. Meteorol. Soc., Boston.
Sinclair, V. A., Belcher, S. E., and Gray, S. L. (2010). Synoptic controls on boundary-layer characteristics.
Boundary-Layer Meteorol., 134, 387–409.
Stoelinga, M. T. (1996). A potential vorticity-based study of the role of diabatic heating and friction
in a numerically simulated baroclinic cyclone. Mon. Weather Rev., 124, 849–874.
Valdes, P. J. and Hoskins, B. J. (1988). Baroclinic Instability of the Zonally Averaged Flow with
Boundary Layer Damping. J. Atmos. Sci., 45, 1584–1593.
Ziemianski, M. (1994). Potential vorticity inversion. Joint Centre for Mesoscale Meterology (JCMM)
Internal Report, 39. University of Reading, Reading, UK.