Basic concepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final reportYano, J.-I., Geleyn, J.-F., Koller, M., Mironov, D., Quass, J., Soares, P. M. M., Phillips, V. J. T. P., Plant, R. S. ORCID: https://orcid.org/0000-0001-8808-0022, Deluca, A., Marquet, P., Stulic, L. and Fuchs, Z. (2015) Basic concepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final report. Atmosphere, 6 (1). pp. 88-147. ISSN 2073-4433
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.3390/atmos6010088 Abstract/SummaryThe research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905) for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.
DownloadsDownloads per month over past year
Plant, R.S.; Yano, J.-I. Parameterization of Atmospheric Convection; Imperial College Press:
London, UK, 2014; Volumes I and II, in press.
2. McFarlane, N. Parameterizations: Representing key processes in climate models without
resolving them. WIREs Clim. Chang. 2011, 2, 482–497.
3. Arakawa, A. The cumulus parameterization problem: Past, present, and future. J. Clim. 2004, 17,
2493–2525.
4. Yano, J.-I.; Vlad, M.; Derbyshire, S.H.; Geleyn, J.-F.; Kober, K. Generalization, consistency, and
unification in the parameterization problem. Bull. Amer. Meteor. Soc. 2014, 95, 619–622.
5. Lesieur, M. Turbulence in Fluids; Martinus Nijhoff Publisher: Dordrecht, Netherlands, 1987.
6. Orszag, S.A. Analytical theories of turbulence. J. Fluid Mech. 1970, 41, 363–386.
7. Guichard, F.; Petch, J.C.; Redelsperger, J.L.; Bechtold, P.; Chaboureau, J.-P.; Cheinet, S.;
Grabowski, W.; Grenier, H.; Jones, C.G.; Kohler, M.; et al. Modelling the diurnal cycle of
deep precipitating convection over land with cloud-resolving models and single-column models.
Quart. J. R. Meteor. Soc. 2004, 604, 3139–3172.
8. Lenderink, G.; Siebesma, A.P.; Cheinet, S.; Irons, S.; Jones, C.G.; Marquet, P.; Müller, F.;
Olmeda, D.; Calvo, J.; Sánchez, E.; et al. The diurnal cycle of shallow cumulus clouds over land:
A single-column model intercomparison study. Quart. J. R. Meteor. Soc. 2004, 130, 3339–3364.
9. Yano, J.-I.; Plant, R.S. Coupling of shallow and deep convection: A key missing element in
atmospheric modelling. J. Atmos. Sci. 2012, 69, 3463–3470.
Atmosphere 2015, 6 137
10. Bechtold, P.; Semane, N.; Lopez, P.; Chaboureau, J.-P.; Beljaars, A.; Bormann, N. Representing
equilibrium and non-equilibrium convection in large-scale models. J. Atmos. Sci. 2014, 71,
734–753.
11. Yano, J.-I.; Graf, H.-F.; Spineanu, F. Theoretical and operational implications of atmospheric
convective organization. Bull. Am. Meteor. Soc. 2012, 93, ES39–ES41
12. Yano, J.-I. Formulation structure of the mass–flux convection parameterization. Dyn. Atmos. Ocean
2014, 67, 1–28.
13. Yano, J.-I. Formulation of the mass–flux convection parameterization. In Parameterization of
Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014;
Volume I, in press.
14. Marquet, P. Definition of a moist entropy potential temperature: Application to FIRE-I data flights.
Quart. J. R. Meteor. Soc. 2011, 137, 768–791.
15. Marquet, P. On the computation of moist-air specific thermal enthalpy. Quart. J. R. Meteor. Soc.
2014, doi:10.1002/qj.2335.
16. Marquet, P.; Geleyn, J.-F. Formulations of moist thermodynamics for atmospheric modelling. In
Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press:
London, UK, 2014; Volume II, in press.
17. Donner, L.J. A cumulus parameterization including mass fluxes, vertical momentum dynamics,
and mesoscale effects. J. Atmos. Sci. 1993, 50, 889–906.
18. Yano, J.-I. Convective vertical velocity. In Parameterization of Atmospheric Convection;
Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press.
19. Yano, J.-I. Interactive comment on “Simulating deep convection with a shallow convection
scheme” by Hohenegger, C., and Bretherton, C. S., On PBL-based closure. Atmos. Chem. Phys.
Discuss. 2011, 11, C2411–C2425.
20. Yano, J.I.; Bister, M.; Fuchs, Z.; Gerard, L.; Phillips, V.; Barkidija, S.; Piriou, J.M.
Phenomenology of convection-parameterization closure. Atmos. Phys. Chem. 2013, 13, 4111–4131.
21. Del Genio, A.D.; Wu, J. The role of entrainment in the diurnal cycle of continental convection.
J. Clim. 2010, 23, 2722–2738.
22. Stratton, R.A.; Stirling, A. Improving the diurnal cycle of convection in GCMs. Quart. J. R.
Meteor. Soc. 2012, 138, 1121–1134.
23. Raymond, D.J. Regulation of moist convection over the warm tropical oceans. J. Atmos. Sci.
1995, 52, 3945–3959.
24. Zhang, G.J. Convective quasi-equilibrium in midlatitude continental environment and its effect on
convective parameterization. J. Geophys. Res. 2002, doi:10.1029/2001JD001005.
25. Zhang, G.J. The concept of convective quasi–equilibrium in the tropical western Pacific:
Comparison with midlatitude continental environment. J. Geophys. Res. 2003, doi:10.1029/
2003JD003520.
26. Mapes, B.E. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a
toy tropical wave model. J. Atmos. Sci. 2000, 57, 1515–1535.
Atmosphere 2015, 6 138
27. Bretherton, C.S.; McCaa, J.R.; Grenier, H. A new parameterization for shallow cumulus
convection and its application to marine subtropical cloud-topped boundary layers. Part I:
Description and 1D results. Mon. Weather Rev. 2004, 132, 864–882.
28. Hohenegger, C.; Bretherton, C.S. Simulating deep convection with a shallow convection scheme.
Atmos. Chem. Phys. 2011, 11, 10389–10406
29. Donner, L.J.; Phillips, V.T. Boundary layer control on convective available potential energy:
Implications for cumulus parameterization. J. Geophys. Res. 2003, doi:10.1029/2003JD003773.
30. Rio, C.; Hourdin, F.; Grandpeix, J.-Y.; Lafore, J.-P. Shifting the diurnal cycle of parameterized
deep convection over land. Geophys. Res. Lett. 2009, doi:10.1029/2008GL036779.
31. Rio, C.; Hourdin, F.; Grandpeix, J.-Y.; Hourdin, H.; Guichard, F.; Couvreux, F.; Lafore, J.-P.;
Fridlind, A.; Mrowiec, A.; Roehrig, R.; et al. Control of deep convection by sub-cloud lifting
processes: The ALP closure in the LMDD5B general circulation model. Clim. Dyn. 2012, 40,
2271–2292.
32. Mapes, B.; Neale, R. Parameterizing convective organization to escape the entrainment dilemma.
J. Adv. Model. Earth Syst. 2011, doi:10/1029/211MS00042.
33. Birch, C.E.; Parker, D.J.; O’Leary, A.; Marsham, J.H.; Taylor, C.M.; Harris, P.P.; Lister, G.M.S.
Impact of soil moisture and convectively generated waves on the initiation of a West African
mesoscale convective system. Quart. J. R. Meteor. Soc. 2013, 139, 1712–1730.
34. Bechtold, P. ECMWF, Reading, UK. Personal communication, 2014.
35. Semane, N. ECMWF, Reading, UK. Personal communication, 2013.
36. De Rooy, W. KNMI, De Bilt, the Netherlands. Personal communication, 2014.
37. Arakawa, A.; Schubert, W.H. Interaction of a cumulus cloud ensemble with the large-scale
environment, pt. I. J. Atmos. Sci. 1974, 31, 674–701.
38. Yano, J.-I.; Plant, R.S. Convective quasi-equilibrium. Rev. Geophys. 2012, 50, RG4004.
39. Leith, C.E. Nonlinear normal mode initialization and quasi–geostrophic theory. J. Atmos. Sci.
1980, 37, 958–968.
40. Davies, L.; Plant, R.S.; Derbyshire, S.H. Departures from convective equilibrium with a
rapidly-varying forcing. Q.J. R. Meteorol. Soc. 2013, 139, 1731–1746.
41. Yano, J.-I.; Plant, R.S. Finite departure from convective quasi-equilibrium: Periodic cycle and
discharge-recharge mechanism. Quator. J. Roy. Meteor. Soc 2012, doi:10.1002/qj.957.
42. Plant, R.S.; Yano, J.-I. The energy-cycle analysis of the interactions between shallow and deep
atmospheric convection. Dyn. Atmos. Ocean 2013, 64, 27–52.
43. Yano, J.-I.; Cheedela, S.K.; Roff, G.L. Towards compressed super–parameterization: Test of
NAM–SCA under single–column GCM configurations. Atmos. Chem. Phys. Discuss. 2012, 12,
28237–28303.
44. Randall, D.A.; Pan, D.-M. Implementation of the Arakawa-Schubert cumulus parameterization
with a prognostic closure. In The Representation of Cumulus Convection in Numerical Models;
Emanuel, K.A., Raymond, D.J., Eds.; American Meteor Society: Boston, MA, USA, 1993;
pp. 137–144.
45. Pan, D.-M.; Randall, D.A. A cumulus parameterization with prognostic closure. Quart. J. R.
Meteor. Soc. 1998, 124, 949–981.
Atmosphere 2015, 6 139
46. Chen, D.H.; Bougeault, P. A simple prognostic closure assumption to deep convective
parameterization. Acta Meteorol. Sin. 1992, 7, 1–18.
47. Wagner, T.M.; Graf, H.F. An ensemble cumulus convection parameterisation with explicit cloud
treatment. J. Atmos. Sci. 2010, 67, 3854–3869.
48. Plant, R.S.; Yano, J.-I. Comment on “An ensemble cumulus convection parameterisation with
explicit cloud treatment” by T.M. Wagner and H.-F. Graf. J. Atmos. Sci. 2011, 68, 1541–1544.
49. Kuo, H.L. Further studies of the parameterization of the influence of cumulus convection on the
large–scale flow. J. Atmos. Sci. 1974, 31, 1232–1240.
50. Yano, J.-I., and R. S. Plant, 2014: Closure. In Parameterization of Atmospheric Convection; Plant,
R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume I, in press.
51. Plant, R.S.; Bengtsson, L. Stochastic aspects of convection parameterization. In Parameterization
of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK,
2014; Volume II, in press.
52. Grant, A.L.M. Cloud–base fluxes in the cumulus–capped boundary layer. Quart. J. R.
Meteor. Soc. 2001, 127, 407–421.
53. Neggers, R.A.J.; Siebesma, A.P.; Lenderink, G.; Holtslag, A.A.M. An evaluation of mass flux
closures for diurnal cycles of shallow cumulus. Mon. Wea. Rev. 2004, 132, 2525–2538.
54. Soares, P.M.M.; Miranda, P.M.A.; Siebesma, A.P.; Teixeira, J. An eddy-diffusivity/mass-flux
parametrization for dry and shallow cumulus convection. Quart. J. R. Meteor. Soc. 2004, 130,
3365–3383.
55. Penland, C. A stochastic approach to nonlinear dynamics: A review. Bull. Am. Meteor. Soc. 2003,
84, 925–925.
56. Melbourne, I.; Stuart, A. A note on diffusion limits of chaotic skew product flows. Nonlinearity
2011, 24, 1361–1367.
57. Gottwald, G.A.; Melbourne, I. Homogenization for deterministic maps and multiplicative noise.
Proc. R. Soc. A 2013, doi:10.1098/rspa.2013.0201.
58. De Rooy, W.C.; Bechtold, P.; Fröhlich, K.; Hohenegger, C.; Jonker, H.; Mironov, D.;
Siebesma, A.P.; Teixeira, J.; Yano, J.-I. Entrainment and detrainment in cumulus convection: An
overview. Quart. J. R. Meteor. Soc. 2013, 139, 1–19.
59. Romps, D.M. A direct measurement of entrainment. J. Atmos. Sci. 2010, 67, 1908–1927.
60. Dawe, J.T.; Austin, P.H. The influence of the cloud shell on tracer budget measurements of LES
cloud entrainment. J. Atmos. Sci. 2011, 68, 2909–2920.
61. Siebesma, A.P.; Cuijpers, J.W.M. Evaluation of parametric assumptions for shallow cumulus
convection. J. Atmos. Sci. 1995, 52, 650–666.
62. Swann, H. Evaluation of the mass–flux approach to parameterizing deep convection. Quart. J. R.
Meteor. Soc. 2001, 127, 1239–1260.
63. Yano, J.-I.; Guichard, F.; Lafore, J.-P.; Redelsperger, J.-L.; Bechtold, P. Estimations of massfluxes
for cumulus parameterizations from high-resolution spatial data. J. Atmos. Sci. 2004, 61,
829–842.
64. Yano, J.-I.; Baizig, H. Single SCA-plume dynamics. Dyn. Atmos. Ocean. 2012, 58, 62–94.
Atmosphere 2015, 6 140
65. Korczyka, P.M.; Kowalewskia, T.A.; Malinowski, S.P. Turbulent mixing of clouds with the
environment: Small scale two phase evaporating flow investigated in a laboratory by particle
image velocimetry. Physica D 2011, 241, 288–296.
66. Diwan, S.S.; Prasanth, P.; Sreenivas, K.R.; Deshpande, S.M.; Narasimha, R. Cumulus-type flows
in the laboratory and on the computer: Simulating cloud form, evolution and large-scale structure.
Bull. Am. Meteor. Soc. 2014, doi:10.1175/BAMS-D-12-00105.1.
67. Squires, P. The spatial variation of liquid water content and droplet concentration in cumuli. Tellus
1958, 10, 372–380.
68. Squires, P. Penetrative downdraughts in cumuli. Tellus 1958, 10, 381–389.
69. Paluch, I.R. The entrainment mechanism of Colorado cumuli. J. Atmos. Sci. 1979, 36, 2467–2478.
70. Kain, J.S.; Fritsch, J.L. A one-dimensional entraining/detraining plume model and its application
in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802.
71. Bechtold, P.; Kohler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.; Vitart, F.;
Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From
synoptic to decadal time-scales. Quart. J. R. Meteor. Soc. 2008, 134, 1337–1351.
72. Derbyshire, S.H.; Maidens, A.V.; Milton, S.F.; Stratton, R.A.;Willett, M.R. Adaptive detrainment
in a convective parameterization. Quart. J. R. Meteor. Soc. 2011, 137, 1856–1871.
73. De Rooy, W.C.; Siebesma, A.P. A simple parameterization for detrainment in shallow cumulus.
Mon. Wea. Rev. 2008, 136, 560–576.
74. Böing, S.J.; Siebesma, A.P.; Korpershoek, J.D.; Jonker, H.J.J. Detrainment in deep convection.
Geophys. Res. Lett. 2012, doi:10.1029/2012GL053735.
75. De Rooy, W.C.; Siebesma, A.P. Analytical expressions for entrainment and detrainment in
cumulus convection. Quart. J. R. Meteor. Soc. 2010, 136, 1216–1227.
76. Neggers, R.A.J. A dual mass flux framework for boundary layer convection. Part II: Clouds.
J. Atmos. Sci. 2009, 66, 1489–1506.
77. Morton, B.R.; Taylor, G.; Turner, J.S. Turbulent gravitational convection from maintained and
instantaneous sources. Proc. Roy. Meteor. Soc. 1956, 234, 1–33.
78. Morton, B.R. Discreet dry convective entities: II Thermals and deflected jets. In The Physics and
Parameterization of Moist Atmospheric Convection; Smith, R.K., Ed.; NATO ASI, Kloster Seeon,
Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 175–210.
79. Yano, J.-I. Basic convective element: Bubble or plume?: A historical review. Atmos. Phys. Chem.
Dis. 2014, 14, 3337–3359.
80. Squires, P.; Turner, J.S. An entraining jet model for cumulo–nimbus updraught. Tellus 1962, 16,
422–434.
81. Bringi, V.N.; Knupp, K.; Detwiler, A.; Liu, L.; Caylor, I.J.; Black, R.A. Evolution of a Florida
thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of
9 August 1991. Mon. Wea. Rev. 1997, 125, 2131–2160.
82. Jonker, H.; His Collaborators. University of Deft, Deft, the Netherlands. Personal
communication, 2009.
Atmosphere 2015, 6 141
83. Heus, T.; Jonker, H.J.J.; van den Akker, H.E.A.; Griffith, E.J.; Koutek, M.; Post, F.H. A statistical
approach to the life cycle analysis of cumulus clouds selected in a vitual reality environment.
J. Geophys. Res. 2009, doi:10.1029/2008JD010917.
84. Levine, J. Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteorol. 1959,
16, 653–662.
85. Gerard, L.; Geleyn, J.-F. Evolution of a subgrid deep convection parameterization in a
limited–area model with increasing resolution. Quart. J. R. Meteor. Soc. 2005, 131, 2293–2312.
86. Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford University
Press: London, UK, 1971.
87. Vattay, G.; Harnos, A. Scaling behavior in daily air humidity fluctuations. Phys. Rev. Lett. 1994,
73, 768–771.
88. Peters, O.; Hertlein, C.; Christensen, K. A complexity view of rainfall. Phys. Rev. Lett. 2002,
88, 018701.
89. Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Cont. Phys. 2005, 46, 323–351.
90. Peters, O.; Neelin, J.D. Critical phenomena in atmospheric precipitation. Nat. Phys 2006, 2,
393–396.
91. Peters, O.; Deluca, A.; Corral, A.; Neelin, J.D.; Holloway, C.E. Universality of rain event size
distributions. J. Stat. Mech. 2010, 11, P11030.
92. J. D. Neelin, O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway. Rethinking convective
quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models.
Phil. Trans. R. Soc. A 2008, 366, 2581–2604.
93. Peters, O.; Neelin, J.D.; Nesbitt, S.W. Mesoscale convective systems and critical clusters.
J. Atmos. Sci. 2009, 66, 2913–2924.
94. Wood, R.; Field, P.R. The distribution of cloud horizontal sizes. J. Clim. 2011, 24, 4800–4816.
95. Muller, C.J.; Back, L.E.; O’Gorman, P.A.; Emanuel, K.A. A model for the relationship between
tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, doi:10.1029/
2009GL039667.
96. Krueger, S. University of Utah, Salt Lake, UT, USA. Personal communication, 2014.
97. Seo, E.-K.; Sohn, B.-J.; Liu, G. How TRMM precipitation radar and microwave imager retrieved
rain rates differ. Geophys. Res. Lett. 2007, doi:10.1029/2007GL032331.
98. Yano, J.-I.; Liu, C.; Moncrieff, M.W. Atmospheric convective organization: Homeostasis or
self-organized criticality? J. Atmos. Sci. 2012, 69, 3449–3462,
99. Raymond, D.J. Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc. 2000,
126, 889–898.
100. Peters, O.; Pruessner, G. Tuning- and Order Parameter in the SOC Ensemble. arXiv:0912.2305v1,
11 December 2009.
101. Yano, J.-I.; Redelsperger, J.-L.; Guichard, F.; Bechtold, P. Mode decomposition as a methodology
for developing convective-scale representations in global models. Quart. J. R. Meteor. Soc. 2005,
131, 2313–2336.
102. Yano, J.-I.; Benard, P.; Couvreux, F.; Lahellec, A. NAM–SCA: Nonhydrostatic Anelastic Model
under Segmentally–Constant Approximation. Mon. Wea. Rev. 2010, 138, 1957–1974.
Atmosphere 2015, 6 142
103. Yano, J.-I. Mass–flux subgrid–scale parameterization in analogy with multi–component flows:
A formulation towards scale independence. Geosci. Model Dev. 2012, 5, 1425–2440.
104. Arakawa, A.;Wu, C.-M. A unified representation of deep moist convection in numerical modeling
of the atmosphere. Part I. J. Atmos. Sci. 2013, 70, 1977–1992.
105. Arakawa, A.; Jung, J.-H.; Wu, C.-M. Toward unification of the multiscale modeling of the
atmosphere. Atmos. Chem. Phys. 2011, 11, 3731–3742.
106. Bihlo, A. A Tutorial on Hamiltonian Mechanics. COST Document, 2011. Available online:
http://convection.zmaw.de/fileadmin/user_upload/convection/Convection/COST_Documents/
Search_for_New_Frameworks/A_Tutorial_on_Hamiltonian_Mechanics.pdf (accessed on 4
December 2014).
107. Cardoso-Bihlo, E.; Popovych, R.O. Invariant Parameterization Schemes. COST Document, 2012.
Available online: http://convection.zmaw.de/fileadmin/user_upload/convection/Convection/
COST_Documents/Search_for_New_Frameworks/Invariant_Parameterization_Schemes.pdf
(accessed on 4 December 2014).
108. Popovych, R.O.; Bihlo, A. Symmetry perserving parameterization schemes. J. Math. Phycs.
2012, 53, 073102.
109. Bihlo, A.; Bluman, G. Conservative parameterization schemes. J. Math. Phys. 2013, 54, 083101.
110. Bihlo, A.; Dos Santos Cardoso-Bihlo, E.M.; Popovych, R.O. Invariant parameterization and
turbulence modeling on the beta-plane. Physica D 2014, 269, 48–62.
111. Grant, A.L.M. Cumulus convection as a turbulent flow. In Parameterization of Atmospheric
Convection; Plant, R.S.; Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume
II, in press.
112. Grant, A.L.M. Precipitating convection in cold air: Virtual potential temperature structure.
Quart. J. R. Meteor. Soc. 2007, 133, 25–36.
113. Seifert, A.; Stevens, B. Microphysical scaling relations in a kinematic model of isolated shallow
cumulus clouds. J. Atmos. Sci. 2010, 67, 1575–1590.
114. Seifert, A.; Zänger, G. Scaling relations in warm-rain orographic precipitation. Meteorol. Z. 2010,
19, 417–426.
115. Stevens, B.; Seifert, A. Understanding microphysical outcomes of microphysical choices in
simulations of shallow cumulus convection. J. Met. Soc. Jpn. 2008, 86A, 143–162.
116. Yano, J.-I.; Phillips, V.T.J. Ice–ice collisions: An ice multiplication process in atmospheric clouds.
J. Atmos. Sci. 2011, 68, 322–333.
117. Chandrasekahr, S. Hydrodynamic and Hydromagnetic Instability; Oxford University Press:
London, UK, 1961.
118. Marquet, P.; Geleyn, J.-F. On a general definition of the squared Brunt–Väisälä frequency
associated with the specific moist entropy potential temperature. Quart. J. R. Meteor. Soc. 2013,
139, 85–100.
119. Durran, D.R.; Klemp, J.B. On the effects of moisture on the Brunt-Vaisala frequency. J. Atmos. Sci.
1982, 39, 2152–2158.
Atmosphere 2015, 6 143
120. Machulskaya, E. Clouds and convection as subgrid–scale distributions. In Parameterization of
Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014;
Volume II, in press.
121. Bony, S.; Emanuel, K.A. A parameterization of the cloudness associated with cumulus
convection: Evaluation using TOGA COARE data. J. Atmos. Sci. 2001, 58, 3158–3183.
122. Tompkins, A.M. A prognostic parameterization for the subgrid–scale variability of water vapor
and clouds in large–scale models and its use to diagnose cloud cover. J. Atmos. Sci. 2002, 59,
1917–1942.
123. Larson, V.E.; Wood, R.; Field, P.R.; Goraz, J.-C.; Haar, T.H.V.; Cotton,W.R. Systematic biases in
the microphysics and thermodynamics of numerical models that ignore subgrid–scale variability.
J. Atmos. Sci. 2002, 58, 1117–1128.
124. Wilson, D.R.; Bushell, A.C.; Kerr-Munslow, A.M.; Price, J.D.; Morcrette, C.J. PC2: A prognostic
cloud fraction and condensation scheme. I: Scheme description. Quart. J. R. Meteor. Soc. 2008,
134, 2093–2107.
125. Klein, S.A.; Pincus, R.; Hannay, C.; Xu, K.-M. How might a statistical cloud scheme be coupled
to a mass–flux convection scheme? J. Geophys. Res. 2005, 110, D15S06.
126. Golaz, J.-C.; Larson, V.E.; Cotton, W.R. A PDF–based model for boundary layer clouds. Part I:
Method and model description. J. Atmos. Sci. 2002, 59, 3540–3551.
127. Plant, R. S. Statistical properties of cloud lifecycles in cloud-resolving models. Atmos. Chem.
Phys. 2009, 9, 2195–2205.
128. Sakradzija, M.; Seifert, A.; Heus, T. Fluctuations in a quasi-stationary shallow cumulus cloud
ensemble, Nonlin. Processes Geophys. Discuss. 2014, 1, 1223–1282.
129. Marquet, P. On the definition of a moist-air potential vorticity. Quart. J. R. Meteor. Soc. 2014,
140, 917–929.
130. Gerard, L. Model resolution issues and new approaches in the grey zone. In Parameterization
of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK,
2014; Volume II, in press.
131. Bechtold, P. ECMWF, Reading, UK. Personal communication, 2014.
132. Bengtsson, L.; Körnich, H.; Källén, E.; Svensson, G. Large-scale dynamical response to subgrid
scale organization provided by cellular automata. J. Atmos. Sci. 2011, 68, 3132–3144.
133. Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.-F. A stochastic parameterization using
cellular automata. Quart. J. R. Meteor. Soc. 2013, 139, 1533–1543.
134. Gerard, L. An integrated package for subgrid convection, clouds and precipitation compatible
with the meso-gamma scales. Quart. J. R. Meteor. Soc. 2007, 133, 711–730
135. Gerard, L.; Piriou, J.-M.; Brožková, R.; Geleyn, J.-F.; Banciu, D. Cloud and precipitation
parameterization in a meso-gamma-scale operational weather prediction model. Mon. Weather Rev.
2009, 137, 3960–3977.
136. Plant, R.S.; Craig, G.C. A stochastic parameterization for deep convection based on equilibrium
statistics. J. Atmos. Sci. 2008, 65, 87–105.
137. Machulskaya, E.; Mironov, D. Implementation of TKE–Scalar Variance Mixing Scheme into
COSMO. Available online: http://www.cosmo-model.org (accessed on 4 December 2014).
Atmosphere 2015, 6 144
138. Mironov, D. Turbulence in the lower troposphere: Second-order closure and mass-flux modelling
frameworks. Lect. Notes. Phys. 2009, 756, 161–221.
139. Smagorinsky, J. General circulation experiments with the primitive equations. I. The basic
equations. Mon. Wea. Rev. 1963, 91, 99–164.
140. Jaynes, E.T. Probability Theory, The Logic of Science; Cambridge University Press: Cambridge,
UK, 2003.
141. Gregory, P.C. Bayesian Logical Data Analysis for the Physical Sciences; Cambridge University
Press: Cambridge, UK, 2005.
142. Khain, A.P.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.;
Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in
cloud–resolving models: Spectral (bin) microphysics vs. bulk–microphysics. Rev. Geophys.
2014, submitted.
143. Phillips, V.T.J. Microphysics of convective cloud and its treatment in parameterization. In
Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I., Eds.; Imperial College Press:
London, UK, 2014; Volume II, in press.
144. Khain, A.P.; Lynn, B.; Shpund, J. Simulation of intensity and structure of hurricane Irene: Effects
of aerosols, ocean coupling and model resolution. In Proceedings of the 94-th AMS Conference,
Atlanta, GA, USA, 2–6 February 2014.
145. Lynn, B.H.; Khain, A.P.; Bao, J.W.; Michelson, S.A.; Yuan, T.; Kelman, G.; Shpund, J.;
Benmoshe, N. The Sensitivity of the Hurricane Irene to aerosols and ocean coupling: Simulations
with WRF with spectral bin microphysics. J. Atmos. Sci. 2014, submitted.
146. Phillips, V.T.J.; Khain, A.; Benmoshe, N.; Ilotovich, E. Theory of time-dependent freezing and its
application in a cloud model with spectral bin microphysics. I: Wet growth of hail. J. Atmos. Sci.
2014, in press.
147. Phillips, V.T.J.; Khain, A.; Benmoshe, N.; Ilotovich, E.; Ryzhkov, A. Theory of time-dependent
freezing and its application in a cloud model with spectral bin microphysics. II: Freezing raindrops
and simulations. J. Atmos. Sci. 2014, in press.
148. Ilotoviz, E.; Khain, A.P.; Phillips, V.T.J.; Benmoshe, N.; Ryzhkov, A.V. Effect of aerosols on
formation and growth regime of hail and freezing drops. J. Atmos. Sci. 2014, submitted.
149. Kumjian, M.R.; Khain, A.P.; Benmoshe, N.; Ilotoviz, E.; Ryzhkov, A.V.; Phillips, V.T.J. The
anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral
bin microphysical model. J. Appl. Meteorol. Climatol. 2014, in press.
150. Khain, A.P.; Ilotoviz, E.; Benmoshe, N.; Phillips, V.T.J.; Kumjian, M.R.; Ryzhkov, A.V. 2014
Application of the theory of time-dependent freezing and hail growth to analysis of hail storm
using a cloud model with SBM. In Proceedings of the 94-th AMS Conference, Atlanta, GA,
USA, 2–6 February 2014.
151. Zipser, E.J. The role of unsaturated convective downdrafts in the structure and rapid decay of an
equatorial disturbance. J. Appl. Met. 1969, 8, 799–814.
152. Zipser, E.J. Mesoscale and convective–scale downdrafts as distinct components of squall–line
circulation. Mon. Wea. Rev. 1977, 105, 1568–1589.
Atmosphere 2015, 6 145
153. Houze, R.A., Jr.; Betts, A.K. Convection in GATE. Rev. Geophys. Space Phys. 1981, 19,
541–576.
154. Emanuel, K.A. The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 1989, 46,
3431–3456.
155. Yano, J.-I.; Emanuel, K.A. An improved model of the equatorial troposphere and its coupling with
the stratosphere. J. Atmos. Sci. 1991, 48, 377–389.
156. Fritsch, J.M.; Chappell, C.F. Numerical prediction of convectively driven mesoscale pressure
systems: Part I: Convective parameterization. J. Atmos. Sci. 1980, 37, 1722–1733.
157. Tiedtke, M. A comprehensive mass flux scheme of cumulus parameterization in large–scale
models. Mon. Wea. Rev. 1989, 117, 1779–1800.
158. Zhang, G.J.; McFarlane, N.A. Sensitivity of climate simulations of the parameterization of
cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean
1995, 33, 407–446.
159. Bechtold, P.; Bazile, E.; Guichard, F.; Mascart, P.; Richard, E. A mass-flux convection scheme for
regional and global models. Quart. J. R. Meteor. Soc. 2001, 127, 869–889.
160. Yano, J.-I. Downdraught. In Parameterization of Atmospheric Convection; Plant, R.S., Yano, J.I.,
Eds.; Imperial College Press: London, UK, 2014; Volume I; in press.
161. Warner, C.; Simpson, J.; Martin, D.W.; Suchman, D.; Mosher, F.R.; Reinking, R.F. Shallow
convection on day 261 of GATE: Mesoscale arcs. Mon. Wea. Rev. 1979, 107, 1617–1635.
162. Zuidema, P.; Li, Z.; Hill, R.J.; Bariteau, L.; Rilling, B.; Fairall, C. Brewer, W.A.; Albrecht, B.;
Hare, J. On trade wind cumulus cold pools. J. Atmos. Sci. 2012, 69, 258–280.
163. Barnes, G.M.; Garstang, M. Subcloud layer energetics of precipitating convection. Mon. Wea.
Rev. 1982, 110, 102–117.
164. Addis, R.P.; Garstang, M.; Emmitt, G.D. Downdrafts from tropical oceanic cumuli. Bound. Layer
Meteorol. 1984, 28, 23–49.
165. Young, G.S.; Perugini, S.M.; Fairall, C.W. Convective wakes in the Equatorial Western Pacific
during TOGA. Mon. Wea. Rev. 1995, 123, 110–123.
166. Lima, M.A.; Wilson, J.W. Convective storm initiation in a moist tropical environment.
Mon. Wea. Rev. 2008, 136, 1847–1864.
167. Flamant, C.; Knippertz, P.; Parker, D.J.; Chaboureau, J.-P.; Lavaysse, C.; Agusti-Panareda, A.;
Kergoat, L. The impact of a mesoscale convective system cold pool on the northward propagation
of the intertropical discontinuity overWest Africa. Quart. J. R. Meteor. Soc. 2009, 135, 139–159.
168. Lothon, M.; Campistron, B.; Chong, M.; Couvreux, F.; Guichard, F.; Rio, C.; Williams, E. Life
cycle of a mesoscale circular gust front observed by a C-band doppler radar in West Africa.
Mon. Wea. Rev. 2011, 139, 1370–1388.
169. Dione, C.; Lothon, M.; Badiane, D.; Campistron, B.; Couvreux, F.; Guichard, F.; Sall, S.M.
Phenomenology of Sahelian convection observed in Niamey during the early monsoon. Quart. J.
R. Meteor. Soc. 2013, doi:10.1002/qj.2149.
170. Khairoutdinov, M.; Randall, D. High-resolution simulations of shallow-to-deep convection
transition over land. J. Atmos. Sci. 2006, 63, 3421–3436.
Atmosphere 2015, 6 146
171. Böing, S.J.; Jonker, H.J.J.; Siebesma, A.P.; Grabowski, W.W. Influence of the subcloud layer on
the development of a deep convective ensemble. J. Atmos. Sci. 2012, 69, 2682–2698.
172. Schlemmer, L.; Hohenegger, C. The formation of wider and deeper clouds as a result of cold-pool
dynamics. J. Atmos. Sci. 2014, submitted.
173. Grandpeix, J-Y.; Lafore, J.-P. A density current parameterization coupled with emanuel’s
convection scheme. Part I: The models. J. Atmos. Sci. 2010, 67, 881–897.
174. Yano, J.-I. Comments on “A density current parameterization coupled with emanuel’s convection
scheme. Part I: The models”. J. Atmos. Sci. 2012, 69, 2083–2089.
175. Browning, K.A.; Hill, F.F.; Pardoe, C.W. Structure and mechanism of precipitation and the effect
of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc. 1974, 100, 309–330.
176. Fuhrer, O.; Schär, C. Embedded cellular convection in moist flow past topography. J. Atmos. Sci.
2005, 62, 2810–2828.
177. Yano, J.-I. Downscaling, parameterization, decomposition, compression: A perspective from the
multiresolutional analysis. Adv. Geophy. 2010, 23, 65–71.
178. Rezacova, D.; Szintai, B.; Jakubiak, B.; Yano, J.I.; Turner, S. Verification of high resolution
precipitation forecast by radar-based data. In Parameterization of Atmospheric Convection;
Plant, R.S., Yano, J.I., Eds.; Imperial College Press: London, UK, 2014; Volume II, in press.
179. Vukicevic, T.; Rosselt, D. Analysis of the impact of model nonlinearities in inverse problem
solving. J. Atmos. Sci. 2008, 65, 2803–2823.
180. Rosselt, D.; Bishop, C.H. Nonlinear parameter estimation: Comparison of an ensemble Kalman
smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev. 2012, 140, 1957–1974.
181. Khain, A. Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical
review. Environ. Res. Lett. 2008, doi:10.1088/1748-9326/1/015004.
182. Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.;
Andreae, M.O. Flood or drought: How do aerosols affect precipitation. Science 2008, 321,
1309–1313.
183. Boucher, O.; Quaas, J. Water vapour affects both rain and aerosol optical depth. Nat. Geosci.
2013, 6, 4–5.
184. Freud, E.; Rosenfeld, D. Linear relation between convective cloud drop number concentration and
depth for rain initiation. J. Geophys. Res. 2012, 117, D02207.
185. Mewes, D. Test Einer Neuen Parametrisierung Konvektiven Niederschlags Im Klimamodell.
Bachelor’s Thesis, University of Leipzig, Leipzig, Germany, 2013.
186. Lohmann, U.; Quaas, J.; Kinne, S.; Feichter, J. Different approaches for constraining global
climate models of the anthropogenic indirect aerosol effect. Bull. Am. Meteorol. Soc. 2007, 88,
243–249.
187. Bodas-Salcedo, A.; Webb, M.J.; Bony, S.; Chepfer, H.; Dufresne, J.-L.; Klein, S.A.; Zhang, Y.;
Marchand, R.; Haynes, J.M.; Pincus, R.; et al. COSP: Satellite simulation software for model
assessment. Bull. Amer. Meteor. Soc. 2011, 92, 1023–1043.
188. Nam, C.; Quaas, J. Evaluation of clouds and precipitation in the ECHAM5 general circulation
model using CALIPSO and CloudSat. J. Clim. 2012, 25, 4975–4992.
Atmosphere 2015, 6 147
189. Nam, C.; Quaas, J.; Neggers, R.; Drian, C.S.; Isotta, F. Evaluation of boundary layer cloud
parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat
satellite data. J. Adv. Model. Earth Syst. 2014, doi:10.1002/2013MS000277.
190. Gehlot, S.; Quaas, J. Convection-climate feedbacks in ECHAM5 general circulation model: A
Lagrangian trajectory perspective of cirrus cloud life cycle. J. Clim. 2012, 25, 5241–5259.
191. Suzuki, K.; Stephens, G.L.; van den Heever, S.C.; Nakajima, T.Y. Diagnosis of the warm rain
process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci.
2011, 68, 2655–2670.
192. Schirber, S.; Klocke, D.; Pincus, R.; Quaas, J.; Anderson, J. Parameter estimation using data
assimilation in an atmospheric general circulation model: From a perfect towards the real world,
J. Adv. Model. Earth Syst. 2013, 5, 1942–2466.
193. Yano, J.-I.; Lane, T.P. Convectively-generated gravity waves simulated by NAM-SCA.
J. Geophys. Res. 2014, doi:10.1002/2013JD021419.
194. Tobias, S.M.; Marston, J.B. Direct Statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett.
2013, 110, 104502. University Staff: Request a correction | Centaur Editors: Update this record |