[1] N. Engheta, “Fractional paradigm in electromagnetic theory,” in Frontiers
in Electromagnetics, D. H. Werner and R. Mittra, Eds. New York, NY,
USA: IEEE Press, 2000, ch. 12.
[2] G. Carlson and C. Halijak, “Approximation of fractional capacitors
(1/s)1/n by a regular Newton process,” IEEE Trans. Circuit Theory,
vol. CT-11, no. 2, pp. 210–213, Jun. 1964.
[3] S. Samadi, M. O. Ahmad, and M. N. S. Swamy, “Results on maximally
flat fractional delay systems,” IEEE Trans. Circuits Syst. I, vol. 51, no. 11,
pp. 2271–2286, Nov. 2004.
[4] R. S. Barbosa, J. A. T.Machado, and M. F. Silva, “Time domain design of
fractional differintegrators using least-squares,” Signal Process., vol. 86,
no. 10, pp. 2567–2581, Oct. 2006.
[5] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequencyband
complex noninteger differentiator: Characterization and
synthesis,” IEEE Trans. Circuits Syst. I, vol. CAS1-47, no. 1,
pp. 25–39, 2000.
[6] C.-C. Tseng, “Design of fractional order digital FIR differentiators,” IEEE
Signal Process. Lett., vol. 8, no. 3, pp. 77–79, Mar. 2001.
[7] H. H. Dam, “Variable fractional delay FIR filter design with a bicriteria
and coefficient relationship,” IEEE Trans. Circuits Syst. II, vol. 61, no. 1,
pp. 36–40, Jan. 2014.
[8] H. Johansson, “Fractional-delay and supersymmetric Mth-band linearphase
FIR filters utilizing partially symmetric and antisymmetric impulse
responses,” IEEE Trans. Circuits Syst. II, vol. 59, no. 6, pp. 366–370,
Jun. 2012.
[9] G. Maione, “Closed-form rational approximations of fractional, analog
and digital differentiators/integrators,” IEEE J. Emerging Sel. Topics
Circuits Syst., vol. 3, no. 3, pp. 322–329, Sep. 2013.
[10] D. Chen, Y. Q. Chen, and D. Xue, “Digital fractional order Savitzky–
Golay differentiator,” IEEE Trans. Circuits Syst. II, vol. 58, no. 11,
pp. 758–762, Nov. 2011.
[11] R. Bouamrane and D. P. Almond, “The emergent scaling phenomenon and
the dielectric properties of random resistor–capacitor networks,” J. Phys.,
Condensed Matter, vol. 15, no. 24, pp. 4089–4100, 2003.
[12] N. J. McCullen, D. P. Almond, C. J. Budd, and G. W. Hunt, “The robustness
of the emergent scaling property of random RC network models
of complex materials,” J. Phys. D, Appl. Phys., vol. 42, no. 6, 2009,
Art. ID. 064001.
[13] R. K. H. Galvão et al., “Multivariate analysis of random threedimensional
RC networks in the time and frequency domains,”
IEEE Trans. Dielectr. Electr. Insulat., vol. 20, no. 3, pp. 995–1008,
Jun. 2013.
[14] I. Podlubny, I. Petrás, B. M. Vinagre, P. O’Leary, and L. Dorcák, “Analogue
realizations of fractional-order controllers,” Nonlinear Dynam.,
vol. 29, no. 1–4, pp. 281–296, Jul. 2002.
[15] B. M. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu, “Some
approximations of fractional order operators used in control theory
and applications,” J. Fractional Calculus Appl. Anal., vol. 3, no. 3,
pp. 231–248, 2000.
[16] L. Chen, Y. Chai, R. Wu, and J. Yang, “Stability and stabilization
of a class of nonlinear fractional-order systems with Caputo derivative,”
IEEE Trans. Circuits Syst. II, vol. 59, no. 9, pp. 602–606,
Sep. 2012.
[17] C.-C. Hua, D. Liu, and X.-P. Guan, “Necessary and sufficient stability
criteria for a class of fractional-order delayed systems,” IEEE Trans.
Circuits Syst. II, vol. 61, no. 1, pp. 59–63, Jan. 2014.
[18] M. A. Pakzad and M. A. Nekoui, “Stability analysis of linear timeinvariant
fractional exponential delay systems,” IEEE Trans. Circuits Syst.
II, vol. 61, no. 9, pp. 721–725, Sep. 2014.
[19] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control
of Dynamic Systems, 5th ed. Upper Saddle River, NJ, USA: Prentice-
Hall, 2006.
[20] C. P. Li, W. H. Deng, and D. Xu, “Chaos synchronization of the Chua
system with a fractional order,” Physica A, vol. 360, no. 2, pp. 171–185,
Feb. 2006.
[21] Y. Q. Chen, I. Petras, and D. Xue, “Fractional order control—A tutorial,”
in Proc. Amer. Control Conf., St. Louis, MO, USA, 2009, pp. 1397–1411.
[22] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
New York, NY, USA: Academic, 1981.
[23] R. K. H. Galvão, S. Hadjiloucas, K. H. Kienitz, H. M. Paiva, and
R. J. M. Afonso, “Fractional order modeling of large three-dimensional
RC networks,” IEEE Trans. Circuits Syst. I, vol. 60, no. 3, pp. 624–637,
Mar. 2013.
[24] L. Ljung, System Identification. Upper Saddle River, NJ, USA:
Prentice-Hall, 1999.