REFERENCES
(1) Rodriguez, J. A.; Goodman, D. W. Surface Science Studies of the Electronic and Chemical Properties of Bimetallic Systems. J. Phys. Chem. 1991, 95 (11), 4196–4206.
(2) Kampshoff, E.; Hahn, E.; Kern, K. Correlation between Surface Stress and the Vibrational Shift of CO Chemisorbed on Cu Surfaces. Phys. Rev. Lett. 1994, 73 (5), 704–707.
(3) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the Computational Design of Solid Catalysts. Nat. Chem. 2009, 1 (1), 37–46.
(4) Hammer, B.; Nørskov, J. K. Theoretical Surface Science and Catalysis — Calculations and Concepts; Advances in Catalysis; Elsevier, 2000; Vol. 45.
(5) Hammer, B.; Norskov, J. K. Why Gold Is the Noblest of All the Metals. Nature 1995, 376 (6537), 238–240.
(6) Kitchin, J.; Nørskov, J.; Barteau, M.; Chen, J. Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93 (15), 156801.
(7) Mavrikakis, M.; Hammer, B.; Nørskov, J. Effect of Strain on the Reactivity of Metal Surfaces. Phys. Rev. Lett. 1998, 81 (13), 2819–2822.
(8) Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer. Angew. Chemie - Int. Ed. 2005, 44 (14), 2080–2084.
(9) Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the Surface Electronic and Chemical Properties of Pt(111) by Subsurface 3d Transition Metals. J. Chem. Phys. 2004, 120 (21), 10240–10246.
(10) Lüth, H. Solid Surfaces, Interfaces and Thin Films, Fifth Edit.; Springer: Germany, 2010.
(11) Etman, H. A.; Zheleva, Z. V.; Held, G.; Bennett, R. A. Epitaxial Growth of Ultrathin Palladium Films on Re{0001}. J. Phys. Chem. C 2011, 115 (10), 4191–4199.
(12) Mun, B.; Lee, C.; Stamenkovic, V.; Markovic, N.; Ross, P. Electronic Structure of Pd Thin Films on Re(0001) Studied by High-Resolution Core-Level and Valence-Band Photoemission. Phys. Rev. B 2005, 71 (11), 115420.
(13) Wu, R.; Freeman, A. Bonding Mechanism at Bimetallic Interfaces: Pd Overlayer on Various Substrates. Phys. Rev. B 1995, 52 (16), 12419–12425.
(14) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50.
(15) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11186.
(16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868.
(17) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979.
(18) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775.
(19) Francis, G. P.; Payne, M. C. Finite Basis Set Corrections to Total Energy Pseudopotential Calculations. J. Phys. Condens. Matter 1990, 2 (19), 4395–4404.
(20) O’Rourke, C.; Bowler, D. R. DSSC Anchoring Groups: A Surface Dependent Decision. J. Phys. Condens. Matter 2014, 26 (19), 195302.
(21) Tillotson, M. J.; Brett, P.; Bennett, R. A.; Grau-Crespo, R. Adsorption of Organic Molecules at the TiO2(110) Surface: The Effect of van Der Waals Interactions. Surf. Sci. 2015, 632, 142–153.
(22) Makov, G.; Payne, M. Periodic Boundary Conditions in Ab Initio Calculations. Phys. Rev. B 1995, 51 (7), 4014–4022.
(23) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192.
(24) Wyckoff, R. W. G. Crystal Structures, Volume 1, Second.; Interscience Publishers: New York, 1963.
(25) Haas, P.; Tran, F.; Blaha, P. Calculation of the Lattice Constant of Solids with Semilocal Functionals. Phys. Rev. B 2009, 79 (8), 085104.
(26) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press, Oxford (UK), 1990.
(27) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36 (3), 354–360.
(28) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved Grid-Based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28 (5), 899–908.
(29) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias. J. Phys. Condens. Matter 2009, 21 (8), 084204.
(30) Birgersson, M.; Almbladh, C.-O.; Borg, M.; Andersen, J. Density-Functional Theory Applied to Rh(111) and CO/Rh(111) Systems: Geometries, Energies, and Chemical Shifts. Phys. Rev. B 2003, 67 (4), 045402.
(31) Köhler, L.; Kresse, G. Density Functional Study of CO on Rh(111). Phys. Rev. B 2004, 70 (16), 165405.
(32) Pueyo Bellafont, N.; Bagus, P. S.; Illas, F. Prediction of Core Level Binding Energies in Density Functional Theory: Rigorous Definition of Initial and Final State Contributions and Implications on the Physical Meaning of Kohn-Sham Energies. J. Chem. Phys. 2015, 142 (21), 214102.
(33) CRC Handbook of Chemistry and Physics, 85th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, 2004.
(34) Weinert, M.; Watson, R. E. Core-Level Shifts in Bulk Alloys and Surface Adlayers. Phys. Rev. B 1995, 51 (23), 17168–17180.
(35) Hennig, D.; Ganduglia-Pirovano, M. V.; Scheffler, M. Adlayer Core-Level Shifts of Admetal Monolayers on Transition Metal Substrates and Their Relation to the Surface Chemical Reactivity. Phys. Rev. B 1995, 53 (15), 7.
(36) Ganduglia-Pirovano, M. V.; Natoli, V.; Cohen, M. H.; Kudrnovsky, J.; Turek, I. Potential, Core-Level and D Band Shifts at Transition Metal Surfaces. Phys. Rev. B 1996, 54 (12), 22.
(37) Golfetto, E.; Baraldi, A.; Pozzo, M.; Alfè, D.; Sala, A.; Lacovig, P.; Vesselli, E.; Lizzit, S.; Comelli, G.; Rosei, R. Determining the Chemical Reactivity Trends of Pd/Ru(0001) Pseudomorphic Overlayers: Core-Level Shift Measurements and DFT Calculations. J. Phys. Chem. C 2010, 114 (1), 436–441.