1. Garrity, G. M., Julia B. A. and Lilburn T. 2004. The revised road map to the manual, p. 159-187. In G. M. Garrity (ed), Bergey’s manual of systematic bacteriology.
Springer-Verlag, New York, N.Y.
2. I. T. Joliffe, Principal Component Analysis, Springer-Verlag, New York, 1986.
3. Clarridge, Jill E., III. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases Clin. Microbiol. Rev. 2004 17: 840-862
4. Drancourt, Michel, Bollet, Claude, Carlioz, Antoine, Martelin, Rolland, Gayral, Jean-Pierre, Raoult, Didier. 16S Ribosomal DNA Sequence Analysis of a Large
Collection of Environmental and Clinical Unidentifiable Bacterial Isolates J. Clin. Microbiol. 2000 38: 3623-3630
5. Drancourt, M., Berger, P., Raoult, D. Systematic 16S rRNA Gene Sequencing of Atypical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans
J. Clin. Microbiol. 2004 42: 2197-2202
6. Drancourt, M., Raoult, D. Sequence-Based Identification of New Bacteria: a Proposition for Creation of an Orphan Bacterium Repository J. Clin. Microbiol. 2005 43:
4311-4315
7. M. Oja, P. Somervuo, S. Kaski, and T. Kohonen, “Clustering of human endogenous retrovirus sequences with median self-organizing map”, in WSOM’03 Workshop on Self-Organizing Maps, 9-14 Sep 2003.
8. Butte, A.J., and Kohane, I.S. (2000) Mutual information relevance networks: functional genomics clustering using pairwise entropy measurements. Proc. Pacific Symposium
on Biocomputing, 5, 415-426.
9. P. Somervuo and T. Kohonen, Clustering and visualization of large protein sequence databases by means of an extension of the self-organizing map, in Discovery Science.
Proceedings of the Third International Conference (2000), pp. 76–85.
10. Teuvo Kohonen and Panu Somervuo, How to make large self-organizing maps for
nonvectorial data, Neural Networks, Volume 15, Issues 8-9, October-November 2002,
Pages 945-952.
11. Yonghui Chen; Reilly, K.D.; Sprague, A.P.; Zhijie Guan. SEQOPTICS: A Protein
Sequence Clustering Method. Computer and Computational Sciences, 2006. IMSCCS
’06. First International Multi-Symposiums on, Vol.1, Iss., 20-24 June 2006
Pages: 69- 75
12. Ankerst M, Breunig MM, Kriegel HP, Sander J: OPTICS: Ordering Points To
Identify the Clustering Structure. In SIGMOD 1999, Proceedings ACM SIGMOD
International Conference on Management of Data, June 13, 1999, Philadelphia,
Pennsylvania, USA, 1999:49-60.
13. Maido Remm, Christian E. V. Storm and Erik L. L. Sonnhammer, Automatic
clustering of orthologs and in-paralogs from pairwise species comparisons, Journal
of Molecular Biology, Volume 314, Issue 5, 14 December 2001, Pages 1041-1052.
14. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 1993, 232:584-99.
15. http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
16. S. Dubnov, R. El-Yaniv, Y. Gdalyahu, E. Schneidman, N. Tishby, and G. Yona. A new nonparametric pairwise clustering algorithm based on iterative estimation of
distance profiles Machine Learning, 47, 3561, 2002
17. J. Buhmann, T. Zoller, “Active Learning for Hierarchical Pairwise Data Clustering,” icpr p. 2186, 2000.
18. Thomas Hofmann and Joachim M. Buhmann. Hierarchical pairwise data clustering by mean–field annealing. In Proceedings of ICANN’95, NEURON IMES’95, volume II, pages 197–202. EC2 & Cie, 1995.
19. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., and Obermayer, K., “Classification on Pairwise Proximity Data, ” NIPS.
20. T. Hofmann and J. Buhmann. Multidimensional scaling and data clustering. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 459–466. Cambridge, Mass: MIT Press, 1995.
21. Hansjrg Klock and Joachim M. Buhmann. Multidimensional scaling by deterministic
annealing In Springer Lecture Notes in Computer Science Venice, editor, Proceedings
of the International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, EMMCVPR’97, volume 1223, pages 246–260,
May 1997.
22. W. S. Torgerson, “Multidimensional scaling: I. Theory and method,” Psychometrika, vol. 17, pp. 401–419, 1952.
23. J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,
position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673–4680, 1994.
24. Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453.
25. T. H. Jukes and C. R. Cantor, Mammalian Protein Metabolism, H. N. Munro, editors, Academic Press, New York, 1969, ch. Evolution of Protein Molecules, pp. 21– 132.
26. S. P. Luttrell, “A Bayesian analysis of self-organizing maps,” Neural Comput., vol. 6, pp. 767–794, 1994.
27. T. Graepel, M. Burger, and K. Obermayer. Self-organizing maps: generalizations and new optimization techniques. Neurocomputing, 21:173–190, 1998.
28. Graepel, T. and Obermayer, K. (1999). A stochastic self organizing map for proximity data. Neural Computation, 11:139–155.
29. T. Hofmann and J. M. Buhmann, “Pairwise data clustering by deterministic annealing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 1–14, 1997. 154
30. Rose, K., “Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems, ” Proc. of the IEEE, Vol. 86:11,
pp.2210-2239, 1998.
31. Teuvo Kohonen. Self-organizing maps. Springer, Berlin; Heidelberg; New-York, 1995.
32. Ultsch, A. U*-Matrix: a Tool to visualize Clusters in high dimensional Data, Technical Report No. 36, Dept. of Mathematics and Computer Science, University of
Marburg, Germany, (2003)
33. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
34. S Kumar, K Tamura, and M Nei (2004) “MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment” Briefings in Bioinformatics
5:150-163.
35. Rice,P. Longden,I. and Bleasby,A. EMBOSS: The European Molecular Biology Open Software Suite (2000) Trends in Genetics 16, (6) pp276–277