Abhilash, S., Sahai, A. K., Pattnaik, S., Goswami, B. N., and Kumar,
A.: Extended range prediction of active-break spells of Indian
summer monsoon rainfall using an ensemble prediction system
in NCEP Climate Forecast System, Int. J. Climatol., 34, 98–113,
doi:10.1002/joc.3668, 2013.
Ball, M. A. and Plant, R. S.: Comparison of stochastic parameter-
ization approaches in a single-column model, Phil. Trans. Roy.
Soc. A, 366, 2605–2623, 2008.
Bechtold, P.: Convection in global numerical weather prediction, in:
Parameterization of Atmospheric Convection. Volume 2: Current
Issues and New Theories, edited by: Plant, R. S. and Yano, J.-I.,
chap. 15, World Scientific, Imperial College Press, 5–45, 2015.
Ben Bouallègue, Z.: Assessment and added value estimation of an
ensemble approach with a focus on global radiation, Mausam, Q.
J. Meteorol. Hydrol. Geophys., 66, 541–550, 2015.
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J.-F.:
A stochastic parametrization for deep convection using cel-
lular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543,
doi:10.1002/qj.2108, 2013.
Bentzien, S. and Friederichs, P.: Decomposition and graphical por-
trayal of the quantile score, Q. J. Roy. Meteor. Soc., 140, 1924–
1934, doi:10.1002/qj.2284, 2014.
Berner, J., Ha, S.-Y., Hacker, J. P., Fournier, A., and Snyder, C.:
Model Uncertainty in a Mesoscale Ensemble Prediction System:
Stochastic versus Multiphysics Representations, Mon. Weather
Rev., 139, 1972–1995, doi:10.1175/2010MWR3595.1, 2011.
Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L.: Impact
of Stochastic Physics in a Convection-Permitting Ensemble,
Mon. Weather Rev., 140, 3706–3721, doi:10.1175/MWR-D-12-
00031.1, 2012.
Bowler, N. E., Arribas, A., Mylne, K. R., Robertson, K. B., and
Beare, S. E.: The MOGREPS short-range ensemble prediction
system, Q. J. Roy. Meteor. Soc., 134, 703–722, 2008.
Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation
of model uncertainties in the ECMWF Ensemble Prediction Sys-
tem, Q. J. Roy. Meteor. Soc., 125, 2887–2908, 1999.
Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M., and
Zhu, Y.: A Comparison of the ECMWF, MSC, and NCEP Global
Ensemble Prediction Systems, Mon. Weather Rev., 133, 1076–
1097, 2005.
Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt,
G., and Vitart, F.: The new ECMWF VAREPS (Variable Resolu-
tion Ensemble Prediction System), Q. J. Roy. Meteor. Soc., 133,
681–695, doi:10.1002/qj.75, 2007.
Christensen, H. M., Moroz, I. M., and Palmer, T. N.: Stochastic
and Perturbed Parameter Representations of Model Uncertainty
in Convection Parameterization, J. Atmos. Sci., 72, 2525–2544,
doi:10.1175/JAS-D-14-0250.1, 2015.
Clark, A. J., Kain, J. S., Stensrud, D. J., Xue, M., Kong, F., Coniglio,
M. C., Thomas, K. W., Wang, Y., Brewster, K., Gao, J., Wang,
X., Weiss, S. J., and Du, J.: Probabilistic Precipitation Forecast
Skill as a Function of Ensemble Size and Spatial Scale in a
Convection-Allowing Ensemble, Mon. Weather Rev., 139, 1410–
1418, doi:10.1175/2010MWR3624.1, 2011.
Davies, L., Jakob, C., Cheung, K., Genio, A. D., Hill, A., Hume, T.,
Keane, R. J., Komori, T., Larson, V. E., Lin, Y., Liu, X., Nielsen,
B. J., Petch, J., Plant, R. S., Singh, M. S., Shi, X., Song, X.,
Wang, W., Whitall, M. A., Wolf, A., Xie, S., and Zhang, G.: A. single-column model ensemble approach applied to the TWP-
ICE experiment, J. Geophys. Res., 118, 6544–6563, 2013.
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Stan-
iforth, A., White, A. A., and Wood, N.: A new dynamical core
for the Met Office’s global and regional modelling of the atmo-
sphere, Q. J. Roy. Meteor. Soc., 131, 1759–1782, 2005.
Ebert, E. E., Damrath, U., Wergen, W., and Baldwin, M. E.:
The WGNE Assessment of Short-term Quantitative Precip-
itation Forecasts, Bull. Am. Meteorol. Soc., 84, 481–492,
doi:10.1175/BAMS-84-4-481, 2003.
Eden, P.: July 2009 A hot start, then very unsettled with several
heavy falls of rain, Weather, 64, i–iv, doi:10.1002/wea.496, 2009.
Gebhardt, C., Theis, S., Paulat, M., and Bouallègue, Z. B.: Un-
certainties in COSMO-DE precipitation forecasts introduced by
model perturbations and variation of lateral boundaries, Atmos.
Res., 100, 168–177, doi:10.1016/j.atmosres.2010.12.008, 2011.
Gneiting, T.: Making and Evaluating Point Forecasts, J. Am. Stat.
Assoc., 106, 746–762, doi:10.1198/jasa.2011.r10138, 2011.
Gregory, D. and Rowntree, P. R.: A Mass Flux Convection Scheme
with Representation of Cloud Ensemble Characteristics and
Stability-Dependent Closure, Mon. Weather Rev., 118, 1483–
1506, 1990.
Groenemeijer, P. and Craig, G. C.: Ensemble forecasting with
a stochastic convective parametrization based on equilibrium
statistics, Atmos. Chem. Phys., 12, 4555–4565, doi:10.5194/acp-
12-4555-2012, 2012.
Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving
precipitation estimates from weather radar using quality con-
trol and correction techniques, Meteorol. Appl., 7, 135–144,
doi:10.1017/S1350482700001468, 2000.
Hersbach, H.: Decomposition of the Continuous Ranked
Probability
Score
for
Ensemble
Prediction
Systems,
Weather
Forecast.,
15,
559–570,
doi:10.1175/1520-
0434(2000)015<0559:DOTCRP>2.0.CO;2, 2000.
Kain, J. S.: The Kain-Fritsch convective parameterization: An up-
date, J. Appl. Meteor., 43, 170–181, 2004.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining / De-
training Plume Model and Its Application in Convective Param-
eterization, J. Atmos. Sci., 47, 2784–2802, 1990.
Keane, R. J. and Plant, R. S.: Large-scale length and time-scales for
use with stochastic convective parametrization, Q. J. Roy. Me-
teor. Soc., 138, 1150–1164, doi:10.1002/qj.992, 2012.
Keane, R. J., Craig, G. C., Zängl, G., and Keil, C.: The Plant-Craig
stochastic convection scheme in ICON and its scale adaptivity,
J. Atmos. Sci., 71, 3404–3415, doi:10.1175/JAS-D-13-0331.1,
2014.
Keil, C., Heinlein, F., and Craig, G. C.: The convective adjustment
time-scale as indicator of predictability of convective precipita-
tion, Q. J. Roy. Meteor. Soc., 140, 480–490, doi:10.1002/qj.2143,
2014.
Khouider, B., Biello, J., and Majda, A. J.: A stochastic multicloud
model for tropical convection, Comm. Math. Sci., 8, 187–216,
2010.
Kober, K., Foerster, A. M., and Craig, G. C.: Examination of
a Stochastic and Deterministic Convection Parameterization in
the COSMO Model, Mon. Weather Rev., 143, 4088–4103,
doi:10.1175/MWR-D-15-0012.1, 2015.
Koenker, R. and Machado, J. A. F.: Goodness of Fit and Related
Inference Processes for Quantile Regression, J. Am. Stat. Assoc.,
94, 1296–1310, doi:10.1080/01621459.1999.10473882, 1999.
Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A.,
Forbes, R., and Halliwell, C.: Characteristics of High-Resolution
Versions of the Met Office Unified Model for Forecasting Con-
vection over the United Kingdom, Mon. Weather Rev., 136,
3408–3424, doi:10.1175/2008MWR2332.1, 2008.
Lin, J. W.-B. and Neelin, J. D.: Toward stochastic deep convective
parameterization in general circulation models, Geophys. Res.
Lett., 30, 1162, doi:10.1029/2002GL016203, 2003.
Marsigli, C., Boccanera, F., Montani, A., and Paccagnella, T.: The
COSMO-LEPS mesoscale ensemble system: validation of the
methodology and verification, Nonlin. Processes Geophys., 12,
527–536, doi:10.5194/npg-12-527-2005, 2005.
Martin, G. M., Ringer, M. A., Pope, V. D., Jones, A., Dearden,
C., and Hinton, T. J.: The Physical Properties of the Atmo-
sphere in the New Hadley Centre Global Environmental Model
(HadGEM1). Part I: Model Description and Global Climatology,
J. Climate, 19, 1274–1301, doi:10.1175/JCLI3636.1, 2006.
Mishra, A. and Krishnamurti, T.: Current status of multimodel su-
perensemble and operational NWP forecast of the Indian summer
monsoon, J. Earth Syst. Sci., 116, 369–384, doi:10.1007/s12040-
007-0037-z, 2007.
Montani, A., Cesari, D., Marsigli, C., and Paccagnella, T.: Seven
years of activity in the field of mesoscale ensemble forecast-
ing by the COSMO-LEPS system: main achievements and
open challenges, Tellus A, 63, 605–624, doi:10.1111/j.1600-
0870.2010.00499.x, 2011.
Plant, R. S. and Craig, G. C.: A Stochastic Parameterization for
Deep Convection Based on Equilibrium Statistics, J. Atmos. Sci.,
65, 87–105, 2008.
Plant, R. S., Bengtsson, L., and Whitall, M. A.: Stochastic aspects
of convective parameterization, in: Parameterization of Atmo-
spheric Convection. Volume 2: Current Issues and New Theories,
edited by: Plant, R. S. and Yano, J.-I., chap. 20, World Scientific,
Imperial College Press, 135–172, 2015.
Ragone, F., Fraedrich, K., Borth, H., and Lunkeit, F.: Coupling a
minimal stochastic lattice gas model of a cloud system to an at-
mospheric general circulation model, Q. J. Roy. Meteor. Soc.,
141, 37–51, doi:10.1002/qj.2331, 2014.
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rain-
fall accumulations from high-resolution forecasts of convective
events, Mon. Weather Rev., 136, 78–97, 2008.
Roy Bhowmik, S. K. and Durai, V. R.: Multi-model ensemble fore-
casting of rainfall over Indian monsoon region, Atmósfera, 21,
225–239, 2008.
Selz, T. and Craig, G. C.: Simulation of upscale error growth with
a stochastic convection scheme, Geophys. Res. Lett., 42, 3056–
3062, doi:10.1002/2015GL063525, 2015a.
Selz, T. and Craig, G. C.: Upscale Error Growth in a High-
Resolution Simulation of a Summertime Weather Event over Eu-
rope, Mon. Weather Rev., 143, 813–827, 2015b.
Smith, R. N. B., Blyth, E. M., Finch, J. W., Goodchild, S., Hall,
R. L., and Madry, S.: Soil state and surface hydrology diagnosis
based on MOSES in the Met Office Nimrod nowcasting system,
Meteorol. Appl., 13, 89–109, doi:10.1017/S1350482705002069,
2006.
eixeira, J. and Reynolds, C. A.: Stochastic Nature of Phys-
ical Parameterizations in Ensemble Prediction: A Stochas-
tic Convection Approach, Mon. Weather Rev., 136, 483–496,
doi:10.1175/2007MWR1870.1, 2008.
Tennant, W. and Beare, S.: New schemes to perturb sea-surface tem-
perature and soil moisture content in MOGREPS, Q. J. Roy. Me-
teor. Soc., 140, 1150–1160, doi:10.1002/qj.2202 2013.
Thirel, G., Regimbeau, F., Martin, E., Noilhan, J., and Habets, F.:
Short- and medium-range hydrological ensemble forecasts over
France, Atmos. Sci. Lett., 11, 72–77, doi:10.1002/asl.254, 2010.
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cu-
mulus
Parameterization
in
Large-Scale
Models,
Mon.
Weather
Rev.,
117,
1779–1800,
doi:10.1175/1520-
0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Wetterzentrale: UK Met Office Surface Analysis, available at: http:
//www.wetterzentrale.de/topkarten/fsfaxbra.html (last access: 12
November 2014), 2009.
Wilks, D.: Statistical Methods in the Atmospheric Sciences: An In-
troduction, International Geophysics Series, Elsevier Academic
Press, 2006.
Yang, C., Yan, Z., and Shao, Y.: Probabilistic precipitation forecast-
ing based on ensemble output using generalized additive models
and Bayesian model averaging, Acta Meteorol. Sin., 26, 1–12,
doi:10.1007/s13351-012-0101-8, 2012.
Zhu, Y.: Ensemble forecast: A new approach to uncer-
tainty and predictability, Adv. Atmos. Sci., 22, 781–788,
doi:10.1007/BF02918678, 2005.