A de novo virus-like topology for synthetic virionsNoble, J. E., De Santis, E. ., Ravi, J., Lamarre, B., Castelletto, V., Ray, S. and Ryadnov, M. G. (2016) A de novo virus-like topology for synthetic virions. Journal of the American Chemical Society, 138 (37). pp. 12202-12210. ISSN 0002-7863
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1021/jacs.6b05751 Abstract/SummaryA de novo ultra-small topology of viral assembly is reported. The design is a tri-faceted coiled-coil peptide helix, which self-assembles into monodisperse, anionic virions able to encapsulate and transfer both RNA and DNA into human cells. Unlike existing artificial systems, the virions share the same physical characteristics of viruses being anionic, non-aggregating, abundant, hollow and uniform in size, while effectively mediating gene silencing and transgene expression. These are the smallest virions reported to date with the ability to adapt and transfer small and large nucleic acids thus offering a promising solution for engineering bespoke artificial viruses with desired functions.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |