Apel, J., J. Holbrook, A. Liu, and J. Tsai, 1985: The Sulu sea internal soliton experiment. J. Phys. Oceanogr., vol. 15, 1625-1651.
Baines, P. G., 1995: Topographic effects in stratified flows
. Cambridge University Press, 498 pp.
Benzaquen, M., A. Darmon, and E. Raphael, 2014: Wake pattern and wave resistance for anisotropic moving disturbances. Phys. Fluids, vol. 26, 092 106.
Bordois, L., F. Auclair, A. Paci, Y. Dossmann, T. Gerkema, and C. Nguyen, 2016: Tidal energy redistribution among vertical modes in a fluid with a mid-depth pycnocline. Phys. Fluids, vol. 28, 101 701.
Cummins, P. F., S. Vagle, L. Armi, and D. M. Farmer, 2003: Strati ed ow over topography: upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. London A, vol. 459, 1467-1487.
Dossmann, Y., A. Paci, F. Auclair, and J. W. Floor, 2011: Simultaneous velocity and density measurements for an energy-based approach to internal waves generated over a ridge. Exp. Fluids, vol. 51, 1013-1028.
Dossmann, Y., A. Paci, F. Auclair, M. Lepilliez, and E. Cid, 2014: Topographically induced internal solitary waves in a pycnocline: ultrasonic probes and stereo-correlation measurements. Phys. Fluids, vol. 26, 056 601.
Esler, J. G., O. J. Rump, and E. R. Johnson, 2007: Non-dispersive and weakly-dispersive single-layer flow over an axysymmetric obstacle: the equivalent aerofoil formulation. J. Fluid Mech., vol. 574, 209-237.
Farmer, D. and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, vol. 283, 188-190.
Grue, J., 2015a: Nonlinear dead water resistance at subcritical speed. Phys. Fluids, vol. 27, 082 103.
Grue, J., 2015b: Nonlinear interfacial wave formation in three dimensions. J. Fluid Mech., vol. 767, 735-762.
Hertenstein, R. F., 2009: The influence of inversions on rotors. Mon. Wea. Rev., vol. 137, 433-446.
Hunt, J. N., 1964: The viscous damping of gravity waves in shallow water. Houille Blanche, vol. 19, 685-691.
Jiang, Q. and R. B. Smith, 2000: V-waves, bow shocks, and wakes in supercritical hydrostatic flow. J. Fluid. Mech., vol. 406, 27-53.
Johnson, E. R. and G. G. Vilenski, 2004: Flow patterns and drag in near-critical flow over isolated orography. J. Atmos. Sci., vol. 61, 2909-2918.
Johnson, E. R. and G. G. Vilenski, 2005: Two-dimensional leaps in the near-critical flow over isolated orography. Proc. Roy. Soc. London A, vol. 61, 3747-3763.
Knigge, C., D. Etling, A. Paci, and O. Eiff, 2010: Laboratory experiments on mountain-induced rotors. Quart. J. Roy. Meteor. Soc., vol. 136, 442-450.
Lacaze, L., A. Paci, E. Cid, S. Cazin, O. Eiff, J. G. Esler, and E. R. Johnson, 2013: Wave patterns generated by an axisymmetric obstacle in a two-layer flow. Exp. Fluids,
vol. 54, 1618.
Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 674 pp.
Lott, F. and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: its formulation and testing. Quart. J. Roy. Meteor. Soc., vol. 123, 101-127.
McFarlane, N. A., 1987: The effect of orographically excited gravity-wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., vol. 44, 1775-1800.
Moisy, F. and M. Rabaud, 2014: Scaling of far-field wake angle of nonaxisymmetric pressure disturbance. Phys. Rev. E,
vol. 89, 063 004.
Nappo, C. J., 2012: An Introduction to Atmospheric Gravity Waves - Second Edition. Academic Press, 359 pp.
Peng, M. S. and W. T. Thompson, 2003: Aspects of the effect on surface friction on flows over mountains. Quart. J. Meteor. Soc., vol. 129, 2527-2557.
Phillips, O. M., 1977: Dynamics of the Upper Ocean. Cambridge University Press, 337 pp.
Pite, H. D., D. R. Topham, and B. J. van Hardenberg, 1995: Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow. J. Phys. Oceanogr., vol. 25, 3008-3031.
Rabaud, M. and F. Moisy, 2013: Ship wakes: Kelvin or mach angle. Phys. Rev. Letters, vol. 110, 214 503.
Rabaud, M. and F. Moisy, 2014: Narrow ship wakes and wave drag for planing hulls. Ocean Engineer.,vol. 90, 34-38.
Sachsperger, J., S. Serafin, and V. Grubisic, 2015: Lee waves on the boundary layer inversion and their dependence on free-atmosphere stability. Front. Earth Sci., vol. 3, 70.
Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Modell. Earth Syst., vol. 5, 117-133.
Sawyer, J. S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., vol. 88, 412-425.
Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., vol. 75, 41-56.
Scorer, R. S., 1953: Theory of air ow over mountains: II - the flow over a ridge. Quart. J. Roy. Meteor. Soc., vol. 79, 70-83.
Scorer, R. S., 1954: Theory of air ow over mountains: III - airstream characteristics. Quart. J. Roy. Meteor. Soc., vol. 80, 417-428.
Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., vol. 64, 594-607.
Smith, R. B., Q. Jiang, and J. D. Doyle, 2006: A theory of gravity wave absorption by a boundary layer. J. Atmos. Sci., vol. 63, 774-781.
Steeneveld, G. J., A. A. M. Holtslag, C. J. Nappo, B. J. H. V. de Wiel, and L. Mahrt, 2008: Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol., vol. 47, 2518-2530.
Stensrud, D. J., 2009: Parametrization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.
Teixeira, M. A. C., 2014: The physics of orographic gravity wave drag. Front. Phys. - Atmos.Sci., vol. 2, 43.
Teixeira, M. A. C., 2017: Diagnosing lee wave rotor onset using a linear model including a boundary layer. Atmosphere, vol. 8, 5, special issue on Atmospheric Gravity Waves.
Teixeira, M. A. C., J. L. Argain, and P. M. A. Miranda, 2013: Orographic drag associated with lee waves trapped at an inversion. J. Atmos. Sci., vol. 70, 2930-2947.
Teixeira, M. A. C. and C.-L. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech. B - Fluids, vol. 47, 16-31.
Tuck, E. O., 1965: The effect of nonlinearity at the free surface on ow past a submerged cylinder. J. Fluid Mech., vol. 22, 401-414.
Vosper, S. B., 2004: Inversion effects on mountain lee waves. Quart. J. Roy. Meteor. Soc., vol. 130, 1723-1748.
Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Ann. Rev. Fluid Mech., vol. 28, 429-476.
Yu, C.-L. and M. A. C. Teixeira, 2015: Impact of non-hydrostatic effects and trapped lee waves on mountain wave drag in directionally sheared flow. Quart. J. Roy. Meteor. Soc., vol. 141, 1572-1585.