Accessibility navigation


Estimating drizzle drop size and precipitation rate using two-colour lidar measurements

Westbrook, C. D. ORCID: https://orcid.org/0000-0002-2889-8815, Hogan, R. J. ORCID: https://orcid.org/0000-0002-3180-5157, O'Connor, E. J. and Illingworth, A. J. ORCID: https://orcid.org/0000-0002-5774-8410 (2010) Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmospheric Measurement Techniques, 3 (3). pp. 671-681. ISSN 1867-8548

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

3MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/amt-3-671-2010

Abstract/Summary

A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:7246
Publisher:Copernicus

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation