Agustsson, H., and H. Olafsson, 2014: Simulations of observed lee waves and rotor turbulence. Mon. Wea. Rev., 142, 832–849.
Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539.
Broad, A. S., 1995: Linear theory of momentum fluxes in 3-d flows with turning of the mean wind with height. Q. J. R. Meteorol. Soc., 121, 1891–1902.
Broutman, D., S. D. Eckermann, H. Knight, and J. Ma, 2017: A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by auckland island. J. Geophys. Res. - Atmos., 122, 699–711.
Carslaw, K. S., and Coauthors, 1998: Increased stratospheric ozone depletion due to mountain induced atmospheric waves. Nature, 391, 675–678.
DeWekker, S., and M. Kossmann, 2015: Convective boundary layer heights over mountainous terrain - a review of concepts. Front. Earth Sci., 3, 77.
Dornbrack, A., T. Gerz, and U. Schumann, 1995: Turbulent breaking of overturning gravity waves below a critical level. Appl. Scient. Res., 54, 163–176.
Doyle, J., and Q. Jiang, 2006: Observations and numerical simulations of mountain waves in the presence of directional wind shear. Q. J. R. Meteorol. Soc., 132, 1877–1905.
Doyle, J., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901–914.
Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric processes over complex terrain, Springer, 59–81.
Eckermann, S. D., A. Do¨rnbrack, H. Flentje, S. B. Vosper, M. Mahoney, T. P. Bui, and K. S. Carslaw, 2006: Mountain wave–induced polar stratospheric cloud forecasts for aircraft science flights during solve/theseo 2000. Wea. Forecast., 21, 42–68.
Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. part I: Numerical transform solutions. J. Atmos. Sci., 72, 2330–2347.
Elvidge, A. D., S. B. Vosper, H.Wells, J. C. Cheung, S. H. Derbyshire, and D. Turp, 2017: Moving towards a wave-resolved approach to forecasting mountain wave induced clear air turbulence. Meteorological Applications, 24, 540–550.
Gill, P. G., 2014: Objective verification of world area forecast centre clear air turbulence forecasts. Meteorol. Applic., 21, 3–11.
Gill, P. G., and A. J. Stirling, 2013: Including convection in global turbulence forecasts. Meteorol. Applic., 20, 107–114.
Grubisic, V., S. Serafin, L. Strauss, S. J. Haimov, J. R. French, and L. D. Oolman, 2015: Wave-induced boundary layer separation in the lee of the medicine bow mountains. part II: Numerical modeling. J. Atmos. Sci., 72, 4865–4884.
Grubisic, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: Linear regime. J. Atmos. Sci., 54, 1943–1960.
Guarino, M.-V., M. A. Teixeira, and M. H. Ambaum, 2016: Turbulence generation by mountain wave breaking in flows with directional wind shear. Q. J. R. Meteorol. Soc., 142, 2715–2726.
Huppert, H. E., and J. W. Miles, 1969: Lee waves in a stratified flow. part 3. semi-elliptical obstacle. J. Fluid Mech, 35, 481–496.
Jiang, Q., and J. D. Doyle, 2004: Gravity wave breaking over the central alps: Role of complex terrain. J. Atmos. Sci., 61, 2249–2266.
Julian, L. T., and P. R. Julian, 1969: Boulder’s winds. Weatherwise, 22, 108–126.
Keller, T. L., S. B. Trier, W. D. Hall, R. D. Sharman, M. Xu, and Y. Liu, 2015: Lee waves associated with a commercial jetliner accident at denver international airport. J. Appl. Meteor. Climatol., 54, 1373–1392.
Kim, J.-H., and H.-Y. Chun, 2010: A numerical study of clear-air turbulence (CAT) encounters over South Korea on 2 April 2007. J. Appl. Meteor. Climatol., 49, 2381–2403.
Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 1530–1549.
Lane, T. P., J. D. Doyle, R. D. Sharman, M. A. Shapiro, and C. D. Watson, 2009: Statistics and dynamics of aircraft encounters of turbulence over greenland. Mon. Wea. Rev., 137, 2687–2702.
Leutbecher, M., 2001: Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains. J. Atmos. Sci., 58, 797–807.
Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35, 59–77.
Lilly, D. K., and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30, 1135–1152.
Martin, A., and F. Lott, 2007: Synoptic responses to mountain gravity waves encountering directional critical levels. J. Atmos. Sci., 64, 828–848.
McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800.
McHugh, J., and R. Sharman, 2013: Generation of mountain wave-induced mean flows and turbulence near the tropopause. Q. J. R. Meteorol. Soc., 139, 1632–1642.
Miranda, P., and I. James, 1992: Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Q. J. R. Meteorol. Soc., 118, 1057–1081.
Nappo, C. J., 2012: An Introduction to Atmospheric Gravity Waves, 2nd Ed. Academic Press.
Queney, P., 1947: Theory of perturbations in stratified currents with applications to air flow over mountain barriers. University of Chicago Press.
Schwartz, B., 1996: The quantitative use of PIREPs in developing aviation weather guidance products. Wea. Forecast., 11, 372–384.
Sharman, R., L. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteor. Climatol., 53, 1416–1432.
Sharman, R., and J. Pearson, 2016: Prediction of energy dissipation rates for aviation turbulence: Part I. forecasting non-convective turbulence. J. Appl. Meteor. Climatol., 56, 317–337.
Sharman, R., C. 848 Tebaldi, G.Wiener, and J.Wolff, 2006: An integrated approach to mid-and upper-level turbulence forecasting. Wea. Forecast., 21, 268–287.
Sharman, R., S. Trier, T. Lane, and J. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39.
Shutts, G., 1995: Gravity-wave drag parametrization over complex terrain: The effect of critical-level absorption in directional wind-shear. Q. J. R. Meteorol. Soc., 121, 1005–1021.
Shutts, G. J., 1998: Stationary gravity-wave structure in flows with directional wind shear. Q. J. R. Meteorol. Soc., 124, 1421–1442.
Shutts, G. J., and A. Gadian, 1999: Numerical simulations of orographic gravity waves in flows which back with height. Q. J. R. Meteorol. Soc., 125, 2743–2765.
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.
Smith, R. B., 1977: The steepening of hydrostatic mountain waves. J. Atmos. Sci., 34, 1634–1654.
Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–364.
Strauss, L., S. Serafin, S. Haimov, and V. Grubisic, 2015: Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and doppler radar measurements. Q. J. R. Meteorol. Soc., 141, 3207–3225.
Teixeira, M., 2014: The physics of orographic gravity wave drag. Front. Phys., 2, 43.
Teixeira, M., and P. Miranda, 2005: Linear criteria for gravity-wave breaking in resonant stratified flow over a ridge. Quarterly Journal of the Royal Meteorological Society, 131, 1815–1820.
Teixeira, M., P. Miranda, and J. Argaın, 2008: Mountain waves in two-layer sheared flows: Critical-level effects, wave reflection, and drag enhancement. J. Atmos. Sci., 65, 1912–1926.
Teixeira, M., and C. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech. B - Fluids, 47, 16–31.
Teixeira, M. A. C., and P. M. A. Miranda, 2009: On the momentum fluxes associated with mountain waves in directionally sheared flows. J. Atmos. Sci., 66, 3419–3433.
Teixeira, M. A. C., P. M. A. Miranda, and M. A. Valente, 2004: An analytical model of mountain wave drag for wind profiles withshear and curvature. J. Atmos. Sci., 61, 1040–1054.
Teixeira, M. A. C., A. Paci, and A. Belleudy, 2017: Drag produced by waves trapped at a density interface in non-hydrostatic flow over an axisymmetric hill. J. Atmos. Sci., 74, 1839–1857.
Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (cat). Mon. Wea. Rev., 140, 2477–2496.
Turner, J., 1999: Development of a mountain wave turbulence prediction scheme for civil aviation. Tech. Rep. 265, Met Office, Bracknell, UK.
Whiteway, J. A., E. G. Pavelin, R. Busen, J. Hacker, and S. Vosper, 2003: Airborne measurements of gravity wave breaking at the tropopause. Geophys. Res. Lett., 30, 2070.
Wolff, J., and R. Sharman, 2008: Climatology of upper-level turbulence over the contiguous United States. J. Appl. Meteor. Climatol., 47, 2198–2214.
Worthington, R., 1998: Tropopausal turbulence caused by the breaking of mountain waves. J. Atmos. Solar-terrest. Phys., 60, 1543–1547.
Xu, X., J. Song, Y. Wang, and M. Xue, 2017: Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using gaussian beam approximation. J. Atmos. Sci., 74, 1783–1798.
Xu, X., Y. Wang, and M. Xue, 2012: Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. J. Atmos. Sci., 69, 3733–3744.