Accessibility navigation


X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in γ-Al2O3

Thompson, P. B. J., Nguyen, B. N., Nicholls, R., Bourne, R. A., Brazier, J. B., Lovelock, K. R. J. ORCID: https://orcid.org/0000-0003-1431-269X, Brown, S. D., Wermeille, D., Bikondoa, O., Lucas, C. A., Hase, T. P. A. and Newton, M. A. (2015) X-ray spectroscopy for chemistry in the 2-4 keV energy regime at the XMaS beamline: ionic liquids, Rh and Pd catalysts in gas and liquid environments, and Cl contamination in γ-Al2O3. Journal of Synchrotron Radiation, 22 (6). pp. 1426-1439. ISSN 0909-0495

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1107/s1600577515016148

Abstract/Summary

The 2-4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5 keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [RhI(CO)2Cl]2 to [gamma]-Al2O3; contamination of [gamma]-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:76265
Publisher:International Union of Crystallography

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation