Baars, H, Ansmann, A, Engelmann, R and Althausen, D. 2008. Continuous monitoring of the boundary-layer top with lidar. Atmos. Chem. Phys. 8: 7281–7296. DOI:10.5194/acp-8-7281-2008
Barlow, JF. 2014. Progress in observing and modelling the urban boundary layer, Urban Clim. 10: 216–240, DOI:10.1016/j.uclim.2014.03.011, 2014.
Barlow, JF, Dunbar, T M, Nemitz, EG, Wood, CR, Gallagher, MW, Davies, F, O’Connor, E, Harrison, RM. 2011. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys. 11: 2111–2125. DOI:10.5194/acp-11-2111-2011
Biavati, G, Feist, DG, Gerbig, C and Kretschmer, R. 2015. Error estimation for localized signal properties: application to atmospheric mixing height retrievals. Atmos. Meas. Tech. 8:4215–4230. DOI:10.5194/amt-8-4215-2015
Blay-Carreras, E, Pino, D, Vilà-Guerau de Arellano, J, van de Boer, A, De Coster, O, Darbieu, C, Hartogensis, O, Lohou, F, Lothon, M and Pietersen, H. 2014. Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys. 14:4515–4530. DOI:10.5194/acp-14-4515-2014
Caicedo, V, Rappenglück, B, Lefer, B, Morris, G, Toledo, D and Delgado, R. 2017. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 10:1609–1622, DOI:10.5194/amt-10-1609-2017
Collaud Coen, M, Praz, C, Haefele, A, Ruffieux, D, Kaufmann, P and Calpini, B. 2014. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos. Chem. Phys. 14:13205–13221. DOI:10.5194/acp-14-13205-2014
Corripio, JG. 2014. insol: Solar Radiation. R package version 1.1.1., https://CRAN.R-project.org/package=insol
Davies, F, Middleton, DR and Bozier, KE. 2007. Urban air pollution modelling and measurements of boundary layer height. Atmos. Environ. 41: 4040–4049. DOI:10.1016/j.atmosenv.2007.01.015
de Bruine, M, Apituley, A, Donovan, DP, Klein Baltink, H and de Haij, MJ. 2017. Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar. Atmos. Meas. Tech. 10:1893–1909. DOI:10.5194/amt-10-1893-2017
de Haij, M, Wauben, W and Klein Baltink, H. 2006. Determination of mixing layer height from ceilometer backscatter profiles, Remote Sens. 63620R–12. DOI:10.1117/12.691050
Di Giuseppe, F, Riccio, A, Caporaso, L, Bonafé, G, Gobbi, GP and Angelini, F. 2012. Automatic detection of atmospheric boundary layer height using ceilometer backscatter data assisted by a boundary layer model. Q. J. R. Meteorol. Soc. 138:649–663. DOI:10.1002/qj.964
DWD. 2007. Ceilomap. http://www.dwd.de/EN/research/projects/ceilomap/ ceilomap_node.html. (Accessed 12 March 2018)
Emeis, S, Schäfer, K and Münkel, C. 2008. Surface-based remote sensing of the mixing-layer height – a review. Meteorol. Zeitschrift 17: 621–630. DOI:10.1127/0941-2948/2008/0312
Eresmaa, N, Karppinen, A, Joffre, SM, Räsänen, J and Talvitie, H. 2006. Mixing height determination by ceilometer. Atmos. Chem. Phys. 6:1485–1493, DOI:10.5194/acp-6-1485-2006
Eresmaa, N, Härkönen, J, Joffre, SM, Schultz, DM, Karppinen, A and Kukkonen, J. 2012. A Three-Step Method for Estimating the Mixing Height Using Ceilometer Data from the Helsinki Testbed. J. Appl. Meteorol. Climatol. 51: 2172–2187. DOI:10.1175/JAMC-D-12-058.1
Geiß, A. 2016. Automated calibration of ceilometer data and its applicability for quantitative aerosol monitoring. PhD Thesis, LMU München. https://edoc.ub.uni-muenchen.de/19930/1/Geiss_Alexander.pdf (Accessed 12 March 2018)
Geiß, A, Wiegner, M, Bonn, B, Schäfer, K, Forkel, R, von Schneidemesser, E, Münkel, C, Chan, KL and Nothard, R. 2017. Mixing layer height as an indicator for urban air quality?. Atmos. Meas. Tech. 10:2969–2988. DOI:10.5194/amt-10-2969-2017
Haeffelin, M, Angelini, F, Morille, Y, Martucci, G, Frey, S, Gobbi, GP, Lolli, S, O’Dowd, CD, Sauvage, L, Xueref-Rémy, I, Wastine, B and Feist, DG. 2012. Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorol. 143: 49–75. DOI:10.1007/s10546-011-9643-z
Haman, CL, Lefer, B, Morris, GA, Haman, CL, Lefer, B and Morris, GA. 2012. Seasonal Variability in the Diurnal Evolution of the Boundary Layer in a Near-Coastal Urban Environment. J. Atmos. Ocean. Technol. 29: 697–710. DOI:10.1175/JTECH-D-11-00114.1
Harvey, NJ, Hogan, RJ and Dacre, HF. 2013. A method to diagnose boundary-layer type using Doppler lidar. Q. J. R. Meteorol. Soc. 139: 1681–1693, DOI:10.1002/qj.2068
Hervo, M, Poltera, Y and Haefele, A. 2016. An empirical method to correct for temperature dependent variations in the overlap function of CHM15k ceilometers. Atmos. Meas. Tech. 7: 2947-2959. DOI:10.5194/amt-9-2947-2016
Knippertz, P and Stuut, J-B W. 2014. Mineral Dust: A Key Player in the Earth System, edited by P. Knippertz and J-B W Stuut, 509 pp. Springer, Netherlands. DOI: 10.1007/978-94-017-8978-3
Kotthaus, S and Grimmond, CSB. 2018. Atmospheric Boundary Layer Characteristics from Ceilometer measurements, Part 2: Application to London’s Urban Boundary Layer. Q. J. R. Meteorol. Soc. in press. DOI: 10.1002/qj3298
Kotthaus, S, O’Connor, E, Münkel, C, Charlton-Perez, C, Haeffelin, M, Gabey, AM and Grimmond, CSB. 2016. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers. Atmos. Meas. Tech. 9: 3769–3791. DOI:10.5194/amt-9-3769-2016
Lammert, A and Bösenberg, J. 2006: Determination of the convective boundary-layer height with laser remote sensing. Boundary-Layer Meteorol. 119: 159–170. DOI:10.1007/s10546-005-9020-x
Lotteraner, C and Piringer, M. 2016. Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights. Boundary-Layer Meteorol. 161:265-287. DOI:10.1007/s10546-016-0169-2
Madonna, F, Amato, F, Vande Hey, J and Pappalardo, G. 2015. Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS. Atmos. Meas. Tech. 8: 2207–2223. DOI:10.5194/amt-8-2207-2015
Markowicz, KM, Flatau, PJ, Kardas, AE, Remiszewska, J, Stelmaszczyk, K and Woeste, L. 2008. Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure. J. Atmos. Ocean. Technol. 25: 928–944, DOI:10.1175/2007JTECHA1016.1
Martucci, G, Matthey, R, Mitev, V and Richner, H. 2007. Comparison between Backscatter Lidar and Radiosonde Measurements of the Diurnal and Nocturnal Stratification in the Lower Troposphere, J. Atmos. Ocean. Technol. 24: 1231–1244, DOI:10.1175/JTECH2036.1
Martucci, G, Milroy, C and O’Dowd, CD. 2010. Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. J. Atmos. Ocean. Technol. 27: 305–318. DOI:10.1175/2009JTECHA1326.1
Marzano, FS, Mereu, L, Montopoli, M, Cimini, D and Martucci, G 2014. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption, Ann. Geophys. 57. DOI:10.4401/ag-6634
Met Office. 2008. AMDAR (Aircraft Meteorological Data Relay) reports collected by the Met Office MetDB System. NCAS British Atmospheric Data Centre. http://catalogue.ceda.ac.uk/uuid/33f44351f9ceb09c495b8cef74860726 (Accessed 12 March 2018)
Met Office. 2012. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current). NCAS British Atmospheric Data Centre. http://badc.nerc.ac.uk/browse/badc/ukmo-midas (Accessed 12 March 2018)
Mielonen, T, Aaltonen, V, Lihavainen, H, Hyvärinen, A-P, Arola, A, Komppula, M and Kivi, R. 2013. Biomass Burning Aerosols Observed in Northern Finland during the 2010 Wildfires in Russia, Atmosphere. 4:17–34. DOI:10.3390/atmos4010017
Morille, Y, Haeffelin, M, Drobinski, P and Pelon, J. 2007. STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data. J. Atmos. Ocean. Technol. 24:761–775. DOI:10.1175/JTECH2008.1
Münkel, C. 2016. Combining gradient and profile fit method for an advanced ceilometer-based boundary layer height detection algorithm, ISARS2016, Varna, Bulgaria, 6-9 June 2016.
Münkel, C, Eresmaa, N, Räsänen, J and Karppinen, A. 2007. Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorol. 124: 117–128. DOI:10.1007/s10546-006-9103-3
Nemuc, A, Stachlewska, I, Vasilescu, J, Górska, A, Nicolae, D and Talianu, C. 2014. Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62. DOI:10.2478/s11600-013-0180-7
Pal, S and Haeffelin, M. 2015. Forcing mechanisms governing diurnal, seasonal, and interannual variability in the boundary layer depths: Five years of continuous lidar observations over a suburban site near Paris. J. Geophys. Res. 120: 11936-11956. DOI:10.1002/2015JD023268
Pal, S, Haeffelin, M and Batchvarova, E. 2013. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements. J. Geophys. Res. Atmos. 118: 9277–9295. DOI:10.1002/jgrd.50710
Pearson, G, Davies, F and Collier, C. 2010. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar, Atmos. Chem. Phys. 10: 5891–5901. DOI:10.5194/acp-10-5891-2010
Peng, J, Grimmond, CSB, Fu, X, Chang, Y, Zhang, G, Guo, J, Tang, C, Gao, J, Xu, X, and Tan, J. 2017. Ceilometer based analysis of Shanghai’s boundary layer height (under rain and fog free conditions). J. Atmos. Ocean. Technol. 34: 749-764. DOI:10.1175/JTECH-D-16-0132.1
Piringer, M, Joffre, S, Baklanov, A, Christen, A, Deserti, M, Ridder, K, Emeis, S, Mestayer, P, Tombrou, M, Middleton, D, Baumann-Stanzer, K, Dandou, A, Karppinen, A and Burzynski, J. 2007. The surface energy balance and the mixing height in urban areas—activities and recommendations of COST-Action 715. Boundary-Layer Meteorol. 124: 3–24. DOI:10.1007/s10546-007-9170-0
Poltera, Y, Martucci, G, Collaud Coen, M, Hervo, M, Emmenegger, L, Henne, S, Brunner, D and Haefele, A. 2017. PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch. Atmos. Chem. Phys. 17: 10051–10070. DOI:10.5194/acp-17-10051-2017
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2017.
Rahn, DA and Mitchell, CJ. 2016. Diurnal Climatology of the Boundary Layer in Southern California Using AMDAR Temperature and Wind Profiles, J. Appl. Meteorol. Climatol. 55: 1123–1137. DOI:10.1175/JAMC-D-15-0234.1
Schäfer, K., Emeis, S. M., Rauch, A., Munkel, C. and Vogt, S. 2004. Determination of the mixing layer height from ceilometer backscatter profiles, Remote Sens. 248–259. DOI:10.1117/12.565592.
Schäfer, K, Emeis, S, Jahn, C, Münkel, C, Schrader, S and Höß, M. 2008. New results from continuous mixing layer height monitoring in urban atmosphere, Proceedings Volume 7107, Remote Sensing of Clouds and the Atmosphere XIII, 71070A. DOI: 10.1117/12.800358
Schween, JH, Hirsikko, A, Löhnert, U and Crewell, S. 2014. Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment. Atmos. Meas. Tech. 7: 3685–3704. DOI:10.5194/amt-7-3685-2014
Sokół, P, Stachlewska, I, Ungureanu, I and Stefan, S. 2014. Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals. Acta Geophys. 62: 367–380. DOI:10.2478/s11600-013-0158-5
Stachlewska, IS, Piądłowski, M, Migacz, S, Szkop, A, Zielińska, AJ and Swaczyna, PL. 2012. Ceilometer observations of the boundary layer over Warsaw, Poland. Acta Geophys. 60: 1386–1412. DOI:10.2478/s11600-012-0054-4
Steyn, DG, Baldi, M and Hoff, RM. 1999. The Detection of Mixed Layer Depth and Entrainment Zone Thickness from Lidar Backscatter Profiles, J. Atmos. Ocean. Technol. 16: 953–959, DOI:10.1175/1520-0426(1999)016<0953:TDOMLD>2.0. CO;2
Stull, RB. 1988. An Introduction to Boundary Layer Meteorology, Kluwer Acad. Publ., Dordrecht., 688 pp.
Tang, G, Zhang, J, Zhu, X, Song, T, Münkel, C, Hu, B, Schäfer, K, Liu, Z, Zhang, J, Wang, L, Xin, J, Suppan, P and Wang, Y. 2016. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 16: 2459–2475. DOI:10.5194/acp-16-2459-2016
Tsaknakis, G, Papayannis, A, Kokkalis, P, Amiridis, V, Kambezidis, HD, Mamouri, RE, Georgoussis, G and Avdikos, G 2011. Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4: 1261–1273, DOI:10.5194/amt-4-1261-2011
Van der Kamp, D and McKendry, I. 2010. Diurnal and Seasonal Trends in Convective Mixed-Layer Heights Estimated from Two Years of Continuous Ceilometer Observations in Vancouver, BC. Boundary-Layer Meteorol. 137: 459–475. DOI:10.1007/s10546-010-9535-7
Wagner, P and Schäfer, K. 2017. Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Clim. 22: 64–79. DOI:10.1016/j.uclim.2015.11.001
Wiegner, M and Gasteiger, J. 2015. Correction of water vapor absorption for aerosol remote sensing with ceilometers. Atmos. Meas. Tech. 8: 3971–3984, DOI:10.5194/amt-8-3971-2015
Wiegner, M, Emeis, S, Freudenthaler, V, Heese, B, Junkermann, W, Münkel, C, Schäfer, K, Seefeldner, M. and Vogt, S. 2006. Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies. J. Geophys. Res. 111: D13201. DOI:10.1029/2005JD006593
Wiegner, M, Gasteiger, J, Groß, S, Schnell, F, Freudenthaler, V and Forkel, R. 2012. Characterization of the Eyjafjallajökull ash-plume: Potential of lidar remote sensing Phys. Chem. Earth, Parts A/B/C 45–46: 79–86, DOI:10.1016/j.pce.2011.01.006