Basu, S., and F. Porte-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary ´
573 layer turbulence: A scale-dependent dynamic modeling approach. Journal of the Atmospheric
574 Sciences, 63 (8), 2074–2091, doi:10.1175/JAS3734.1.
27
575 Basu, S., J.-F. Vinuesa, and A. Swift, 2008: Dynamic les modeling of a diurnal cycle. Journal
576 of Applied Meteorology and Climatology, 47 (4), 1156–1174, doi:10.1175/2007JAMC1677.1,
577 URL http://dx.doi.org/10.1175/2007JAMC1677.1, http://dx.doi.org/10.1175/2007JAMC1677.
578 1.
579 Beare, R., 2014: A length scale defining partially-resolved boundary-layer turbulence simulations.
580 Boundary-Layer Meteorology, 151 (1), 39–55, doi:10.1007/s10546-013-9881-3, URL http://dx.
581 doi.org/10.1007/s10546-013-9881-3.
582 Bhattacharya, R., and B. Stevens, 2016: A two turbulence kinetic energy model as a scale583
adaptive approach to modeling the planetary boundary layer. Journal of Advances in Modeling
584 Earth Systems, 8 (1), 224–243, doi:10.1002/2015MS000548, URL http://dx.doi.org/10.1002/
585 2015MS000548.
586 Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent lagrangian dynamic model
587 for large eddy simulation of complex turbulent flows. Physics of Fluids, 17 (2), 025105, doi:http:
588 //dx.doi.org/10.1063/1.1839152, URL http
597 Ching, J., R. Rotunno, M. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014:
598 Convectively induced secondary circulations in fine-grid mesoscale numerical weather predic599
tion models. Monthly Weather Review, 142 (9), 3284–3302, doi:10.1175/MWR-D-13-00318.1,
600 URL http://dx.doi.org/10.1175/MWR-D-13-00318.1.
601 Clarke, R. H., A. J. Dyer, R. R. Brook, D. G. Reid, and A. J. Troup, 1971: The wangara experiment:
602 Boundary layer data. Tech. Rep. 340, CSIRO Division of Meteorological Physics Tech.
603 Deardorff, J., 1974: Three-dimensional numerical study of turbulence in an entraining mixed
604 layer. Boundary-Layer Meteorology, 7 (2), 199–226, doi:10.1007/BF00227913, URL http://dx.
605 doi.org/10.1007/BF00227913.
606 Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the
607 boundary-layer grey zone. Quarterly Journal of the Royal Meteorological Society, 141 (693),
608 3006–3017, doi:10.1002/qj.2585, URL http://dx.doi.org/10.1002/qj.2585.
609 Efstathiou, G. A., R. J. Beare, S. Osborne, and A. P. Lock, 2016: Grey zone simulations of
610 the morning convective boundary layer development. Journal of Geophysical Research: At611
mospheres, 121 (9), 4769–4782, doi:10.1002/2016JD024860, URL http://dx.doi.org/10.1002/
612 2016JD024860, 2016JD024860.
613 Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgridscale eddy vis614
cosity model. Physics of Fluids A, 3 (7), 1760–1765, URL http://scitation.aip.org/content/aip/
615 journal/pofa/3/7/10.1063/1.857955.
616 Glendening, J. W., and T. Haack, 2001: Influence of advection differencing error upon large617
eddy simulation accuracy. Boundary-Layer Meteorology, 98 (1), 127–153, doi:10.1023/A:
618 1018734205850, URL https://doi.org/10.1023/A:1018734205850.
29
619 Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and
620 P. A. Clark, 2015: Mixing-length controls on high-resolution simulations of convective storms.
621 Quarterly Journal of the Royal Meteorological Society, 141 (686), 272–284, doi:10.1002/qj.
622 2356, URL http://dx.doi.org/10.1002/qj.2356.
623 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit
624 treatment of entrainment processes. Monthly Weather Review, 134 (9), 2318–2341, doi:10.1175/
625 MWR3199.1, URL http://dx.doi.org/10.1175/MWR3199.1.
626 Honnert, R., F. Couvreux, V. Masson, and D. Lancz, 2016: Sampling the structure of con627
vective turbulence and implications for grey-zone parametrizations. Boundary-Layer Mete628
orology, 160 (1), 133–156, doi:10.1007/s10546-016-0130-4, URL http://dx.doi.org/10.1007/
629 s10546-016-0130-4.
630 Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representa631
tion of turbulence in atmospheric models at the kilometric scale. Journal of the Atmospheric
632 Sciences, 68 (12), 3112–3131, doi:10.1175/JAS-D-11-061.1, URL http://dx.doi.org/10.1175/
633 JAS-D-11-061.1.
634 Huang, H.-Y., B. Stevens, and S. A. Margulis, 2008: Application of dynamic subgrid-scale mod635
els for large-eddy simulation of the daytime convective boundary layer over heterogeneous sur636
faces. Boundary-Layer Meteorology, 126 (3), 327–348, doi:10.1007/s10546-007-9239-9, URL
637 http://dx.doi.org/10.1007/s10546-007-9239-9.
638 Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the mellor–yamada
639 model to the terra incognita zone for dry convective mixed layers in the free convection regime.
640 Boundary-Layer Meteorology, 157 (1), 23–43, doi:10.1007/s10546-015-0045-5, URL http://
641 dx.doi.org/10.1007/s10546-015-0045-5.
30
642 Kirkil, G., J. Mirocha, E. Bou-Zeid, F. K. Chow, and B. Kosovic, 2012: Implementation and ´
643 evaluation of dynamic subfilter-scale stress models for large-eddy simulation using wrf. Monthly
644 Weather Review, 140 (1), 266–284, doi:10.1175/MWR-D-11-00037.1, URL https://doi.org/10.
645 1175/MWR-D-11-00037.1, https://doi.org/10.1175/MWR-D-11-00037.1.
646 Kirkpatrick, M. P., A. S. Ackerman, D. E. Stevens, and N. N. Mansour, 2006: On the application
647 of the dynamic smagorinsky model to large-eddy simulations of the cloud-topped atmospheric
648 boundary layer. Journal of the Atmospheric Sciences, 63 (2), 526–546, doi:10.1175/JAS3651.1,
649 URL https://doi.org/10.1175/JAS3651.1, https://doi.org/10.1175/JAS3651.1.
650 Kober, K., and G. C. Craig, 2016: Physically based stochastic perturbations (PSP) in the
651 boundary layer to represent uncertainty in convective initiation. Journal of the Atmospheric
652 Sciences, 73 (7), 2893–2911, doi:10.1175/JAS-D-15-0144.1, URL https://doi.org/10.1175/
653 JAS-D-15-0144.1, https://doi.org/10.1175/JAS-D-15-0144.1.
654 Kumar, V., J. Kleissl, C. Meneveau, and M. B. Parlange, 2006: Large-eddy simulation of a diur655
nal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water
656 Resources Research, 42 (6), n/a–n/a, doi:10.1029/2005WR004651, URL http://dx.doi.org/10.
657 1029/2005WR004651.
658 Leonard, B. P., M. K. Macvean, and A. P. Lock, 1993: Positivity-preserving numerical schemes
659 for multidimensional advection. Tech. Rep. 62, NASA.
660 Leoncini, G., R. S. Plant, S. L. Gray, and P. A. Clark, 2013: Ensemble forecasts of a flood661
producing storm: comparison of the influence of model-state perturbations and parameter mod662
ifications. Quarterly Journal of the Royal Meteorological Society, 139 (670), 198–211, doi:
663 10.1002/qj.1951, URL http://dx.doi.org/10.1002/qj.1951.
31
664 Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experi665
ments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, 195.
666 Lilly, D. K., 1992: A proposed modification of the germano subgridscale closure method. Physics
667 of Fluids A: Fluid Dynamics, 4 (3), 633–635, doi:10.1063/1.858280, URL http://dx.doi.org/10.
668 1063/1.858280, http://dx.doi.org/10.1063/1.858280.
669 Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new bound670
ary layer mixing scheme. part i: Scheme description and single-column model tests. Monthly
671 Weather Review, 128 (9), 3187–3199, doi:10.1175/1520-0493(2000)128h3187:ANBLMSi2.0.
672 CO;2, URL http://dx.doi.org/10.1175/1520-0493(2000)128h3187:ANBLMSi2.0.CO;2.
673 Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large674
eddy simulations of boundary layers. Journal of Fluid Mechanics, 242,
675 51–78, doi:10.1017/S0022112092002271, URL https://www.cambridge.org/
676 core/article/stochastic-backscatter-in-large-eddy-simulations-of-boundary-layers/
677 8DA0CAA88C4B9B841FA8887E12685312.
678 Meneveau, C., T. S. Lund, and W. H. Cabot, 1996: A lagrangian dynamic subgrid-scale model of
679 turbulence. Journal of Fluid Mechanics, 319, 353–385, doi:10.1017/S0022112096007379.
680 Nakanishi, M., R. Shibuya, J. Ito, and H. Niino, 2014: Large-eddy simulation of a residual layer:
681 Low-level jet, convective rolls, and kelvin–helmholtz instability. Journal of the Atmospheric
682 Sciences, 71 (12), 4473–4491, doi:10.1175/JAS-D-13-0402.1, URL https://doi.org/10.1175/
683 JAS-D-13-0402.1, https://doi.org/10.1175/JAS-D-13-0402.1.
684 Piacsek, S. A., and G. P. Williams, 1970: Conservation properties of convection dif685
ference schemes. Journal of Computational Physics, 6 (3), 392 – 405, doi:http://dx.
32
686 doi.org/10.1016/0021-9991(70)90038-0, URL http://www.sciencedirect.com/science/article/
687 pii/0021999170900380.
688 Pope, S. B., 2004: Ten questions concerning the large-eddy simulation of turbulent flows. New
689 Journal of Physics, 6 (1), 35, URL http://stacks.iop.org/1367-2630/6/i=1/a=035.
690 Porte-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for ´
691 large-eddy simulation: application to a neutral atmospheric boundary layer. Journal of Fluid
692 Mechanics, 415, 261–284, doi:10.1017/S0022112000008776, URL http://journals.cambridge.
693 org/article S0022112000008776.
694 Shin, H. H., and J. Dudhia, 2016: Evaluation of pbl parameterizations in wrf at subkilometer
695 grid spacings: Turbulence statistics in the dry convective boundary layer. Monthly Weather
696 Review, 144 (3), 1161–1177, doi:10.1175/MWR-D-15-0208.1, URL http://dx.doi.org/10.1175/
697 MWR-D-15-0208.1, http://dx.doi.org/10.1175/MWR-D-15-0208.1.
698 Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical trans699
ports in convective boundary layers at gray-zone resolutions. Journal of the Atmospheric Sci700
ences, 70 (10), 3248–3261, doi:10.1175/JAS-D-12-0290.1, URL http://dx.doi.org/10.1175/
701 JAS-D-12-0290.1.
702 Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in
703 convective boundary layers at gray-zone resolutions. Monthly Weather Review, 143 (1), 250–
704 271, doi:10.1175/MWR-D-14-00116.1, URL http://dx.doi.org/10.1175/MWR-D-14-00116.1.
705 Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Monthly
706 Weather Review, 91 (3), 99–164, doi:10.1175/1520-0493(1963)091h0099:GCEWTPi2.3.CO;2,
707 URL http://dx.doi.org/10.1175/1520-0493(1963)091h0099:GCEWTPi2.3.CO;2.
33
708 Stein, T. H. M., R. J. Hogan, P. A. Clark, C. E. Halliwell, K. E. Hanley, H. W. Lean, J. C.
709 Nicol, and R. S. Plant, 2015: The DYMECS project: A statistical approach for the evaluation
710 of convective storms in high-resolution NWP models. Bulletin of the American Meteorologi711
cal Society, 96 (6), 939–951, doi:10.1175/BAMS-D-13-00279.1, URL https://doi.org/10.1175/
712 BAMS-D-13-00279.1, https://doi.org/10.1175/BAMS-D-13-00279.1.
713 Stoll, R., and F. Porte-Agel, 2008: Large-eddy simulation of the stable atmospheric boundary layer ´
714 using dynamic models with different averaging schemes. Boundary-Layer Meteorology, 126 (1),
715 1–28, doi:10.1007/s10546-007-9207-4, URL http://dx.doi.org/10.1007/s10546-007-9207-4.
716 Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary
717 layer statistics and structures generated by large-eddy simulation. Journal of the Atmospheric
718 Sciences, 68 (10), 2395–2415, doi:10.1175/JAS-D-10-05010.1, URL http://dx.doi.org/10.1175/
719 JAS-D-10-05010.1.
720 Thurston, W., R. J. B. Fawcett, K. J. Tory, and J. D. Kepert, 2016: Simulating boundary-layer rolls
721 with a numerical weather prediction model. Quarterly Journal of the Royal Meteorological
722 Society, 142 (694), 211–223, doi:10.1002/qj.2646, URL http://dx.doi.org/10.1002/qj.2646.
723 Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita”. Journal of the At724
mospheric Sciences, 61 (14), 1816–1826, doi:10.1175/1520-0469(2004)061h1816:TNMITTi2.
725 0.CO;2, URL http://dx.doi.org/10.1175/1520-0469(2004)061h1816:TNMITTi2.0.CO;2.
726 Xie, S., N. Ghaisas, and C. L. Archer, 2015: Sensitivity issues in finite-difference large-eddy
727 simulations of the atmospheric boundary layer with dynamic subgrid-scale models. Boundary728
Layer Meteorology, 157 (3), 421–445, doi:10.1007/s10546-015-0071-3, URL https://doi.org/
729 10.1007/s10546-015-0071-3.
34
730 Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita.
731 Journal of the Atmospheric Sciences, 71 (7), 2545–2563, doi:10.1175/JAS-D-13-0356.1, URL
732 http://dx.doi.org/10.1175/JAS-D-13-0356.1.