Synthesis, electronic structure and redox properties of the diruthenium sandwich complexes [Cp*Ru(μ-C10H8)RuCp*]x (x = 0, 1+; Cp* = C5Me5; C10H8 = naphthalene)Herrmann, D., Rödl, C., de Bruin, B., Hartl, F. ORCID: https://orcid.org/0000-0002-7013-5360 and Wolf, R. (2018) Synthesis, electronic structure and redox properties of the diruthenium sandwich complexes [Cp*Ru(μ-C10H8)RuCp*]x (x = 0, 1+; Cp* = C5Me5; C10H8 = naphthalene). Dalton Transactions, 47 (32). pp. 11058-11069. ISSN 1477-9226
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1039/c8dt02003e Abstract/SummaryThe dinuclear ruthenium complex [Cp*Ru(μ-C10H8)RuCp*] (1; Cp* = η5-C5Me5) was prepared by reduction of the cationic precursor [Cp*Ru(η6-C10H8)]PF6 with KC8. Diamagnetic 1 has a symmetric molecular structure with an anti-facial configuration of the Cp*Ru moieties coordinating to naphthalene. Density Functional Theory (DFT) studies showed an electronic structure similar to that of the analogous diiron complex [Cp*Fe(μ-C10H8)FeCp*]. Cyclic voltammetry and UV-vis spectroelectrochemistry showed that 1 can be reversibly oxidized to 1+ and 12+. Chemical oxidation with [Cp2Fe]BArF4 afforded the paramagnetic compound [1]BArF4, which was investigated by EPR, single-crystal X-ray diffractometry and DFT calculations. Reaction of 1 with Brookhart's acid gave the hydride complex [3]BArF4, which was characterized spectroscopically and crystallographically. Cyclic voltammetry showed that [3]+ is converted back to 1 upon reduction and oxidation.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |