Accessibility navigation


Urban energy exchanges monitoring from space

Chrysoulakis, N., Grimmond, S. ORCID: https://orcid.org/0000-0002-3166-9415, Feigenwinter, C., Lindberg, F., Gastellu-Etchegorry, J.-P., Marconcini, M., Mitraka, Z., Stagakis, S., Crawford, B., Olofson, F., Landier, L., Morrison, W. and Parlow, E. (2018) Urban energy exchanges monitoring from space. Scientific Reports, 8 (1). 11498. ISSN 2045-2322

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

4MB
[img] Text - Accepted Version
· Restricted to Repository staff only

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/s41598-018-29873-x

Abstract/Summary

One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:78729
Publisher:Nature Publishing Group

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation