1. Noiton DAM, Alspach PA. Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci. American Society for Horticultural Science; 1996;121: 773–782.
2. Qian G-Z, Liu L, Tang G. (1933) Proposal to conserve the name Malus domestica against M. pumila, M. communis, M. frutescens, and Pyrus dioica (Rosaceae). Taxon. 2010;59: 3.
3. Lycett SJ, Von Cramon-Taubadel N. A 3D morphometric analysis of surface geometry in Levallois cores: Patterns of stability and variability across regions and their implications. J Archaeol Sci. Elsevier Ltd; 2013;40: 1508–1517. doi:10.1016/j.jas.2012.11.005
4. Marramà G, Kriwet J. Principal component and discriminant analyses as powerful tools to support taxonomic identification and their use for functional and phylogenetic signal detection of isolated fossil shark teeth. PLoS One. 2017;12: 1–22. doi:10.1371/journal.pone.0188806
5. Rohlf F, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol. 1990;39: 40–59. doi:10.2307/2992207
6. Rohlf FJ, Bookstein FL. Computing the uniform component of shape variation. Syst Biol. 2003;52: 66–69. doi:10.1080/10635150390132759
7. Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: Ten years of progress following the ‘revolution’. Ital J Zool. 2004;71: 5–16. doi:10.1080/11250000409356545
8. Stoyanova DK, Algee-Hewitt BFB, Kim J, Slice DE. A Computational Framework for Age-at-Death Estimation from the Skeleton: Surface and Outline Analysis of 3D Laser Scans of the Adult Pubic Symphysis. J Forensic Sci. 2017;62: 1434–1444. doi:10.1111/1556-4029.13439
9. Linnaeus C. Species plantarum: A facsimile of the first edition. London: The Ray Society 1957; 1753. doi:10.5962/bhl.title.60086
10. Palmeri TJ, Gauthier I. Visual object understanding. Nat Rev Neurosci. 2004;5: 291–303. doi:10.1038/nrn1364
11. von Ahn L, Blum M, Hopper NJ, Langford J. CAPTCHA: Using hard AI problems for security. Advances in Cryptology — EUROCRYPT 2003. 2003. pp. 294–311. doi:10.1007/3-540-39200-9_18
12. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: A literature survey. ACM Comput Surv. 2003;35: 399–458. doi:10.1145/954339.954342
13. Liu J, Li J, Feng L, Li L, Tian J, Lee K. Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex. Elsevier Ltd; 2014;53: 60–77. doi:10.1016/j.cortex.2014.01.013
14. Sinha P. Recognizing complex patterns. Nat Neurosci. 2002;5 Suppl: 1093–7. doi:10.1038/nn949
15. Zheng L, He X, Hintz T. Comparison of SVMs in number plate recognition. In: Singh S, Singh M, editors. Progress in Pattern Recognition. London: Springer-Verlag; 2007.
16. Van Bocxlaer B, Schultheiß R. Comparison of morphometric techniques for shapes with few homologous landmarks based on machine-learning approaches to biological discrimination. Paleobiology. 2010;36: 497–515. doi:10.1666/08068.1
17. Guisande C, Manjarrés-Hernández A, Pelayo-Villamil P, Granado-Lorencio C, Riveiro I, Acuña A, et al. IPez: An expert system for the taxonomic identification of fishes based on machine learning techniques. Fish Res. 2010;102: 240–247. doi:10.1016/j.fishres.2009.12.003
18. Santana FS, Costa AHR, Truzzi FS, Silva FL, Santos SL, Francoy TM, et al. A reference process for automating bee species identification based on wing images and digital image processing. Ecol Inform. Elsevier B.V.; 2014;24: 248–260. doi:10.1016/j.ecoinf.2013.12.001
19. da Silva FL, Sella MLG, Francoy TM, Costa AHR. Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Comput Electron Agric. Elsevier B.V.; 2015;114: 68–77. doi:10.1016/j.compag.2015.03.012
20. Velemínská J, Krajíček V, Dupej J, Goméz-Valdés JA, Velemínský P, Šefčáková A, et al. Technical Note: Geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: The accuracy and reliability of sex classification. Am J Phys Anthropol. 2013;152: 558–565. doi:10.1002/ajpa.22373
21. Wilf P, Zhang S, Chikkerur S, Little SA, Wing SL, Serre T. Computer vision cracks the leaf code. Proc Natl Acad Sci. 2016; 201524473. doi:10.1073/pnas.1524473113
22. Pante E, Schoelinck C, Puillandre N. From integrative taxonomy to species description: One step beyond. Syst Biol. 2015;64: 152–160. doi:10.1093/sysbio/syu083
23. Mckay BD, Mays HL, Yao C Te, Wan D, Higuchi H, Nishiumi I. Incorporating color into integrative taxonomy: Analysis of the varied tit (Sittiparus varius) complex in East Asia. Syst Biol. 2014;63: 505–517. doi:10.1093/sysbio/syu016
24. Magauer M, Schönswetter P, Jang TS, Frajman B. Disentangling relationships within the disjunctly distributed Alyssum ovirense/A.wulfenianum group (Brassicaceae), including description of a novel species from the north-eastern Alps. Bot J Linn Soc. 2014;176: 486–505. doi:10.1111/boj.12214
25. Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A, De Meulemeester T, et al. Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): Towards an integrative approach. Zool Scr. 2015;44: 281–297. doi:10.1111/zsc.12107
26. Ronikier M, Zalewska-Gałosz J. Independent evolutionary history between the Balkan ranges and more northerly mountains in Campanula alpina s.l. (Campanulaceae): Genetic divergence and morphological segregation of taxa. Taxon. 2014;63: 116–131. doi:10.12705/631.4
27. Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N. With eyes wide open: A revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc. 2014;170: 1–33. doi:10.1111/zoj.12092
28. Mercês MP, Lynch Alfaro JW, Ferreira WAS, Harada ML, Silva Júnior JS. Morphology and mitochondrial phylogenetics reveal that the Amazon River separates two eastern squirrel monkey species: Saimiri sciureus and S. collinsi . Mol Phylogenet Evol. 2015;82: 426–435. doi:10.1016/j.ympev.2014.09.020
29. Skoracka A, Kuczyński L, Rector B, Amrine JW. Wheat curl mite and dry bulb mite: Untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linn Soc. 2014;111: 421–436. doi:10.1111/bij.12213
30. Mamos T, Wattier R, Majda A, Sket B, Grabowski M. Morphological vs. Molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, (Crustacea: Amphipoda). J Zool Syst Evol Res. 2014;52: 237–248. doi:10.1111/jzs.12062
31. Laurito M, Almirón WR, Ludueña-Almeida FF. Discrimination of four Culex (Culex) species from the Neotropics based on geometric morphometrics. Zoomorphology. 2015;134: 447–455. doi:10.1007/s00435-015-0271-x
32. Buj I, Šanda R, Marčić Z, Ćaleta M, Mrakovčić M. Combining morphology and genetics in resolving taxonomy-a systematic revision of spined loaches (genus Cobitis; Cypriniformes, Actinopterygii) in the adriatic watershed. PLoS One. 2014;9. doi:10.1371/journal.pone.0099833
33. Clark S, Cleal Q. A manual key for the identification of apples based on descriptions in Bultitude (1983). Yorkshire; 2005.
34. Sanders R. The Apple Book. 1st ed. London: Frances Lincoln Limited Publishers; 2010.
35. Morgan J, Richards A. The Book of Apples. 1st ed. London: Ebury Press; 1993.
36. Angelova A, Zhu S. Efficient object detection and segmentation for fine-grained recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013; 811–818. doi:10.1109/CVPR.2013.110
37. Nilsback ME, Zisserman A. Automated flower classification over a large number of classes. Proc - 6th Indian Conf Comput Vision, Graph Image Process ICVGIP 2008. 2008; 722–729. doi:10.1109/ICVGIP.2008.47
38. Poland J, Clement EJ. The Vegetative Key to the British Flora. Botanical Society of the British Isles; 2009.
39. Corney DPA, Tang HL, Clark JY, Hu Y, Jin J. Automating digital leaf measurement: The tooth, the whole tooth, and nothing but the tooth. PLoS One. 2012;7: 1–10. doi:10.1371/journal.pone.0042112
40. Corney DPA, Clark JY, Tang HL, Wilkin P. Automatic extraction of leaf characters from herbarium specimens. Taxon. 2012;61: 231–244.
41. Clark JY, Corney DPA, Wilkin P. Leaf-based automated species classification using image processing and neural networks. In: Lestrel PE, editor. Proceedings of the 4th International Symposium on Biological Shape Analysis (ISBSA). World Scientific; 2017. pp. 29–56.
42. Rohlf FJ. tpsDig 2.17 [Internet]. Stony Brook; 2013. Available: http://life.bio.sunysb.edu/morph/soft-dataacq.html
43. Klingenberg C. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11: 353–7. doi:10.1111/j.1755-0998.2010.02924.x
44. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11: 36–41. doi:10.1117/1.3589100
45. Kampichler C, Wieland R, Calmé S, Weissenberger H, Arriaga-Weiss S. Classification in conservation biology: A comparison of five machine-learning methods. Ecol Inform. 2010;5: 441–450. doi:10.1016/j.ecoinf.2010.06.003
46. Bouveyron C. Adaptive mixture discriminant analysis for supervised leaning with unobserved classes. J Classif. 2014;31: 49–84.
47. Breiman L. Bagging predictors. Mach Learn. 1996;24: 123–140.
48. Quinlan JR. C5.0 version 2.07 [Internet]. Empire Bay, Australia; 2015 [cited 16 Sep 2015]. Available: http://www.rulequest.com/download.html
49. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. London: Chapman & Hall; 1984.
50. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. J Comput Graph Stat. 2006;15: 651–674. doi:10.1198/106186006X133933
51. Breiman L. Random forests. Mach Learn. 2001;45: 5–32. doi:10.1023/A:1010933404324
52. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13: 21–27. doi:10.1109/TIT.1967.1053964
53. John GHG, Langley P. Estimating continuous distributions in Bayesian classifiers. Eleventh Conference on Uncertainty in Artificial Intelligence. 1995. pp. 338--345. doi:10.1.1.8.3257
54. Werbos P. Beyond regression: New Tools for prediction and analysis in the behavioral sciences. Harvard University. 1974.
55. Hastie T, Buja A, Tibshirani R. Penalized discriminant analysis. Ann Stat. 1995;23: 73–102.
56. Kim SJ, Magnani A, Boyd SP. Robust Fisher discriminant analysis. Electr Eng. 2006;1: 1–8.
57. Ozuysal M, Calonder M, Lepetit V, Fua P. Fast keypoint recognition using random ferns. IEEE Trans Pattern Anal Mach Intell. 2010;32: 448–461. doi:10.1109/TPAMI.2009.23
58. Cortes C, Vapnik V. Support vector network. Mach Learn. 1995;20: 1–25.
59. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelwhardt A, et al. caret: Classification and Regression Training. R package version 6.0-37. 2014.
60. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Internet]. Vienna, Austria.: R Foundation for Statistical Computing; 2017. Available: http://www.r-project.org/.
61. Christodoulou MD. Quantification of fruit shape in apple: Development of methodologies and assessment of their potential use in cultivar identification. 2016.
62. Hey J, Waples RS, Arnold ML, Butlin RK, Harrison RG. Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol. 2003;18: 597–603. doi:10.1016/j.tree.2003.08.014
63. Hey J. On the failure of modern species concepts. Trends Ecol Evol. 2006;21: 447–450. doi:10.1016/j.tree.2006.05.011
64. Compton JA, Hedderson TA. A morphometric analysis of the Cimicifuga foetida L. complex (Ranunculaceae). Bot J Linn Soc. 1997;123: 1–23. doi:10.1111/j.1095-8339.1997.tb01402.x
65. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Trans Evol Comput. 1997;1: 67–82. doi:10.1109/4235.585893