References
1. Cogdell, R. J.; Gall, A.; Köhler, J., The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 2006, 39, 227-324.
2. Nakamura, Y., Aratani, N., Osuka, A., Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. Chem. Soc. Rev. 2007, 36, 831 - 845.
3. Campbell, W. M., Burrell, A. K., Officer, D. L., Jolley, K. W., Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordin. Chem. Rev. 2004, 248, 1363-1379.
4. Crossley, M. J.; Burn, P. L., An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. J. Chem. Soc. Chem. Comm. 1991, 1569-1571.
5. Sedghi, G.; García-Suárez, V. M.; Esdaile, L. J.; Anderson, H. L.; Lambert, C. J.; Martín, S.; Bethell, D.; Higgins, S. J.; Elliott, M.; Bennett, N., et al., Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nanotechnol. 2011, 6, 517.
6. Li, Z.; Park, T.-H.; Rawson, J.; Therien, M. J.; Borguet, E., Quasi-ohmic single molecule charge transport through highly conjugated meso-to-meso ethyne-bridged porphyrin wires. Nano Lett. 2012, 12, 2722-2727.
7. Kuang, G.; Chen, S.-Z.; Wang, W.; Lin, T.; Chen, K.; Shang, X.; Liu, P. N.; Lin, N., Resonant charge transport in conjugated molecular wires beyond 10 nm range. J. Am. Chem. Soc. 2016, 138, 11140-11143.
8. Ferreira, Q.; Bragança, A. M.; Alcácer, L.; Morgado, J., Conductance of well-defined porphyrin self-assembled molecular wires up to 14 nm in length. J. Phys. Chem. C 2014, 118, 7229-7234.
9. Lin, V.; DiMagno, S.; Therien, M., Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. Science 1994, 264, 1105-1111.
10. Susumu, K.; Frail, P. R.; Angiolillo, P. J.; Therien, M. J., Conjugated chromophore arrays with unusually large hole polaron delocalization lengths. J. Am. Chem. Soc. 2006, 128, 8380-8381.
11. Sedghi, G.; Esdaile, L. J.; Anderson, H. L.; Martin, S.; Bethell, D.; Higgins, S. J.; Nichols, R. J., Comparison of the conductance of three types of porphyrin-based molecular wires: beta-meso, beta-fused tapes, meso-butadiyne-linked and twisted meso-meso linked oligomers. Adv. Mater. 2012, 24, 653-657.
12. Tsuda, A.; Osuka, A., Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science 2001, 293, 79-82.
13. Anderson, H. L., Conjugated porphyrin ladders. Inorg. Chem. 1994, 33, 972-981.
14. N. Taylor, P.; Huuskonen, J.; T. Aplin, R.; L. Anderson, H.; Huuskonen, J.; Rumbles, G.; Williams, E., Conjugated porphyrin oligomers from monomer to hexamer. Chem. Commun. 1998, 909-910.
15. Nakamura, Y.; Aratani, N.; Shinokubo, H.; Takagi, A.; Kawai, T.; Matsumoto, T.; Yoon, Z. S.; Kim, D. Y.; Ahn, T. K.; Kim, D., et al., A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. J. Am. Chem. Soc. 2006, 128, 4119-4127.
16. Singh, H. K., Kumar, P., Waghmare, U. V., Theoretical prediction of a stable 2D crystal of vanadium porphyrin: a half-metallic ferromagnet. J. Phys. Chem. C 2015, 119, 25657 - 25662.
17. Hoffmann, M., Kärnbratt, J., Chang, M. H., Herz, L. M., Albinsson, B., Anderson, H. L., Enhanced p conjugation around a porphyrin[6] nanoring. Angew. Chem. 2008, 120, 5071 - 5074.
18. Hoffmann, M.; Wilson, C. J.; Odell, B.; Anderson, H. L., Template‐directed synthesis of a π‐conjugated porphyrin nanoring. Angew. Chem. Int. Ed. 2007, 46, 3122-3125.
19. O'Sullivan, M. C., Sprafke, J. K., Kondratuk, D. V., Rinfray, C., Claridge, T. D. W., Saywell, A., Blunt, M. O., O'Shea, J. N., Beton, P. H., Malfois, M., Anderson, H. L., Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 2011, 469, 72 - 75.
20. Rickhaus, M.; Vargas Jentzsch, A.; Tejerina, L.; Grübner, I.; Jirasek, M.; Claridge, T. D. W.; Anderson, H. L., Single-acetylene linked porphyrin nanorings. J. Am. Chem. Soc. 2017, 139, 16502-16505.
21. Neuhaus, P., Cnossen, A., Gong, J. Q., Herz, L. M., Anderson, H. L., A molecular nanotube with three-dimensional p-conjugation. Angew. Chem. Int. Ed. 2015, 54, 7344 - 7348.
22. Allec, S. I., Ilawe, N. V., Wong, B. M., Unusual bandgap oscillations in template-directed p-conjugated porphyrin nanotubes. J. Phys. Chem. Lett. 2016, 7, 2362 - 2367.
23. Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15 - 50.
24. Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169 - 11186.
25. Perdew, J. P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865 - 3868.
26. Perdew, J. P., Burke, K., Ernzerhof, M., Errata: "Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]". Phys. Rev. Lett. 1997, 78, 1396.
27. Heyd, J., Scuseria, G. E., Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207 - 8215.
28. Heyd, J., Scuseria, G. E., Ernzerhof, M., Erratum: "Hybrid functionals based on a screened Coulomb potential" [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.
29. Zhu, G., Sun, Q., Kawazoe, Y., Jena, P., Porphyrin-based porous sheet: optoelectronic properties and hydrogen storage. Int. J. Hydrogen Energy 2015, 40, 3689 - 3696.
30. Henderson, T. M., Paier, J., Scuseria, G. E., Accurate treatment of solids with the HSE screened hybrid. Phys. Status Solidi B 2011, 248, 767 - 774.
31. Garza, A. J., Scuseria, G. E., Predicting Band Gaps with Hybrid Density Functionals. J. Phys. Chem. Lett. 2016, 7, 4165 - 4170.
32. Aziz, A., Ruiz-Salvador, R., Hernández, N. C., Calero, S., Hamad, S., Grau-Crespo, R., Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions. J. Mater. Chem. A 2017, 5, 11894-11904.
33. Hamad, S., Hernandez, N. C., Aziz, A., Ruiz-Salvador, A. R., Calero, S., Grau-Crespo, R., Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis. J. Mater. Chem. A 2015, 3, 23458 - 23465.
34. Souza, I.; Marzari, N.; Vanderbilt, D., Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 2001, 65, 035109.
35. Butler, K. T., Hendon, C. H., Walsh, A., Electronic chemical potentials of porous metal - organic frameworks. J. Am. Chem. Soc. 2014, 136, 2703 - 2706.
36. Kondo, M.; Nozaki, D.; Tachibana, M.; Yumura, T.; Yoshizawa, K., Electronic structures and band gaps of chains and sheets based on phenylacetylene units. Chem. Phys. 2005, 312, 289-297.
37. Yamaguchi, Y., Time-dependent density functional calculations of fully p-conjugated zinc oligoporphyrins. J. Chem. Phys. 2002, 117, 9688 - 9694.
38. Pedersen, T. G., Lynge, T. B., Kristensen, P. K., Johansen, P. M., Theoretical study of conjugated porphyrin polymers. Thin Solid Films 2005, 477, 182 - 186.
39. Ohmori, S., Kawabata, H., Tokunaga, K., Tachikawa, H., Molecular design of high performance fused porphyrin one-dimensional wire: a DFT study. Thin Solid Films 2009, 518, 901 - 905.
40. Susumu, K.; Maruyama, H.; Kobayashi, H.; Tanaka, K., Theoretical approach to the design of supramolecular conjugated porphyrin polymers. J. Mater. Chem. 2001, 11, 2262-2270.
41. Tan, J., Li, W., He, X., Zhao, M., Stable ferromagnetism and half-metallicity in two-dimensional polyporphyrin frameworks. RSC Adv. 2013, 3, 7016 - 7022.
42. Yamaguchi, Y., Theoretical study of two‐dimensionally fused zinc porphyrins: DFT calculations. Int. J. Quantum Chem. 2009, 109, 1584-1597.