Accessibility navigation


Fine–scale structure in cometary dust tails I: analysis of striae in comet C/2006 P1 (McNaught) through temporal mapping

Price, O., Jones, G. H., Morrill, J., Owens, M. ORCID: https://orcid.org/0000-0003-2061-2453, Battams, K., Morgan, H., Drückmuller, M. and Deiries, S. (2019) Fine–scale structure in cometary dust tails I: analysis of striae in comet C/2006 P1 (McNaught) through temporal mapping. Icarus, 319. pp. 540-557. ISSN 0019-1035

[img]
Preview
Text - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

8MB
[img] Text - Accepted Version
· Restricted to Repository staff only
· Available under License Creative Commons Attribution Non-commercial No Derivatives.

13MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.icarus.2018.09.013

Abstract/Summary

Striated features, or striae, form in cometary dust tails due to an as-yet unconstrained process or processes. For the first time we directly display the formation of striae, at C/2006 P1 McNaught, using data from the SOHO LASCO C3 coronagraph. The nature of this formation suggests both fragmentation and shadowing effects are important in the formation process. Using the SOHO data with STEREO-A and B data from the HI-1 and HI-2 instruments, we display the evolution of these striae for two weeks, with a temporal resolution of two hours or better. This includes a period of morphological change on 2007 January 13–14 that we attribute to Lorentz forces caused by the comet’s dust tail crossing the heliospheric current sheet. The nature of this interaction also implies a mixing of different sized dust along the striae, implying that fragmentation must be continuous or cascading. To enable this analysis, we have developed a new technique – temporal mapping – that displays cometary dust tails directly in the radiation beta (ratio of radiation pressure to gravity) and dust ejection time phase space. This allows for the combination of various data sets and the removal of transient motion and scaling effects.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:80018
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation