Basu S, Vinuesa JF, Swift A. 2008. Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology 47(4): 1156–1174, doi:
226
227
228
10.1175/2007JAMC1677.1, URL http://dx.doi.org/10.1175/2007JAMC1677.1.
Beare R. 2014. A length scale defining partially-resolved boundary-layer turbulence simulations. Boundary-Layer Meteorology 151(1): 39–55, doi:10.1007/
s10546-013-9881-3, URL http://dx.doi.org/10.1007/s10546-013-9881-3.
Bou-Zeid E, Meneveau C, Parlange M. 2005. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Physics of
230 Fluids 17(2): 025105, doi:http://dx.doi.org/10.1063/1.1839152, URL http://scitation.aip.org/content/aip/journal/pof2/17/2/10.
231 1063/1.1839152.
232
233
234
235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
10
Boutle IA, Eyre JEJ, Lock AP. 2014. Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather Review 142(4): 1655–1668, doi:
10.1175/MWR-D-13-00229.1, URL http://dx.doi.org/10.1175/MWR-D-13-00229.1.
Boutle IA, Finnenkoetter A, Lock AP, Wells H. 2015. The London model: forecasting fog at 333 m resolution. Quarterly Journal of the Royal Meteorological
Society 142(694): 360–371, doi:10.1002/qj.2656, URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2656.
236 Brown AR, Derbyshire SH, Mason PJ. 1994. Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model.
237 Quarterly Journal of the Royal Meteorological Society 120(520): 1485–1512, doi:10.1002/qj.49712052004, URL http://dx.doi.org/10.1002/
238 qj.49712052004.
239
240
Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AJ. 1971. The Wangara experiment: Boundary layer data. Technical Report 340, CSIRO Division of
Meteorological Physics Tech.
241 de Roode SR, Jonker HJJ, van de Wiel BJH, Vertregt V, Perrin V. 2017. A diagnosis of excessive mixing in smagorinsky subfilter-scale turbulent
242 kinetic energy models. Journal of the Atmospheric Sciences 74(5): 1495–1511, doi:10.1175/JAS-D-16-0212.1, URL https://doi.org/10.1175/
243 JAS-D-16-0212.1.
244
245
Efstathiou GA, Beare RJ. 2015. Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quarterly Journal of the Royal Meteorological
Society 141(693): 3006–3017, doi:10.1002/qj.2585, URL http://dx.doi.org/10.1002/qj.2585.
246 Efstathiou GA, Beare RJ, Osborne S, Lock AP. 2016. Grey zone simulations of the morning convective boundary layer development. Journal of Geophysical
247 Research: Atmospheres 121(9): 4769–4782, doi:10.1002/2016JD024860, URL http://dx.doi.org/10.1002/2016JD024860. 2016JD024860.
248 Efstathiou GA, Plant RS, Bopape MJM. 2018. Simulation of an evolving convective boundary layer using a scale-dependent dynamic smagorinsky model
249 at near-gray-zone resolutions. Journal of Applied Meteorology and Climatology 57(9): 2197–2214, doi:10.1175/JAMC-D-17-0318.1, URL https:
250 //doi.org/10.1175/JAMC-D-17-0318.1.
c 2018 Royal Meteorological Society
Quarterly Journal of the Royal Meteorological Society
Page 11 of 12
251
252
11
Germano M, Piomelli U, Moin P, Cabot WH. 1991. A dynamic subgridscale eddy viscosity model. Physics of Fluids A 3(7): 1760–1765, URL http:
//scitation.aip.org/content/aip/journal/pofa/3/7/10.1063/1.857955.
253 Hanley KE, Plant RS, Stein THM, Hogan RJ, Nicol JC, Lean HW, Halliwell C, Clark PA. 2015. Mixing-length controls on high-resolution simulations of
254 convective storms. Quarterly Journal of the Royal Meteorological Society 141(686): 272–284, doi:10.1002/qj.2356, URL http://dx.doi.org/10.
255 1002/qj.2356.
256
257
258
259
260
261
262
263
Hong SY, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134(9):
2318–2341, doi:10.1175/MWR3199.1, URL http://dx.doi.org/10.1175/MWR3199.1.
Honnert R, Couvreux F, Masson V, Lancz D. 2016. Sampling the structure of convective turbulence and implications for grey-zone parametrizations. Boundary-
Layer Meteorology 160(1): 133–156, doi:10.1007/s10546-016-0130-4, URL http://dx.doi.org/10.1007/s10546-016-0130-4.
Honnert R, Masson V. 2014. What is the smallest physically acceptable scale for 1d turbulence schemes? Frontiers in Earth Science 2: 27, doi:10.3389/feart.
2014.00027, URL https://www.frontiersin.org/article/10.3389/feart.2014.00027.
Honnert R, Masson V, Couvreux F. 2011. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. Journal of
the Atmospheric Sciences 68(12): 3112–3131, doi:10.1175/JAS-D-11-061.1, URL http://dx.doi.org/10.1175/JAS-D-11-061.1.
264 Huang HY, Stevens B, Margulis SA. 2008. Application of dynamic subgrid-scale models for large-eddy simulation of the daytime convective boundary layer
265 over heterogeneous surfaces. Boundary-Layer Meteorology 126(3): 327–348, doi:10.1007/s10546-007-9239-9, URL http://dx.doi.org/10.1007/
266 s10546-007-9239-9.
267
Ito J, Hayashi S, Hashimoto A, Ohtake H, Uno F, Yoshimura H, Kato T, Yamada Y. 2017. Stalled improvement in a numerical weather prediction model as
horizontal resolution increases to the sub-kilometer scale. SOLA 13: 151–156, doi:10.2151/sola.2017-028.
268
269 Ito J, Niino H, Nakanishi M, Moeng CH. 2015. An extension of the mellor–yamada model to the terra incognita zone for dry convective mixed layers in
270 the free convection regime. Boundary-Layer Meteorology 157(1): 23–43, doi:10.1007/s10546-015-0045-5, URL http://dx.doi.org/10.1007/
271 s10546-015-0045-5.
272 Kirkpatrick MP, Ackerman AS, Stevens DE, Mansour NN. 2006. On the application of the dynamic Smagorinsky model to large-eddy simulations of the cloud-
273 topped atmospheric boundary layer. Journal of the Atmospheric Sciences 63(2): 526–546, doi:10.1175/JAS3651.1, URL https://doi.org/10.1175/
274 JAS3651.1.
275 Leonard BP, Macvean MK, Lock AP. 1993. Positivity-preserving numerical schemes for multidimensional advection. Technical Report 62, NASA.
276 Lilly DK. 1967. The representation of small-scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental
277
Sciences : 195.
278 Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column
279 model tests. Monthly Weather Review 128(9): 3187–3199, doi:10.1175/1520-0493(2000)128 3187:ANBLMS 2.0.CO;2, URL http://dx.doi.org/
280 10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.
281
Mason
PJ,
Thomson
242:
DJ.
1992.
51–78,
Stochastic
backscatter
in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Dynamic blending sub-grid mixing scheme
large-eddy
doi:10.1017/S0022112092002271,
simulations
URL
of
boundary
layers.
Journal
of
Fluid
282 Mechanics
283 stochastic-backscatter-in-large-eddy-simulations-of-boundary-layers/8DA0CAA88C4B9B841FA8887E12685312.
https://www.cambridge.org/core/article/
284 Piacsek SA, Williams GP. 1970. Conservation properties of convection difference schemes. Journal of Computational Physics 6(3): 392 – 405, doi:
285 http://dx.doi.org/10.1016/0021-9991(70)90038-0, URL http://www.sciencedirect.com/science/article/pii/0021999170900380.
286 Shin HH, Hong SY. 2015. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Monthly Weather
287
Review 143(1): 250–271, doi:10.1175/MWR-D-14-00116.1, URL http://dx.doi.org/10.1175/MWR-D-14-00116.1.
288 Stein THM, Hogan RJ, Clark PA, Halliwell CE, Hanley KE, Lean HW, Nicol JC, Plant RS. 2015. The DYMECS project: A statistical approach for the evaluation
289 of convective storms in high-resolution NWP models. Bulletin of the American Meteorological Society 96(6): 939–951, doi:10.1175/BAMS-D-13-00279.1,
290 URL https://doi.org/10.1175/BAMS-D-13-00279.1.
291 Wyngaard JC. 2004. Toward numerical modeling in the “terra incognita”. Journal of the Atmospheric Sciences 61(14): 1816–1826, doi:10.1175/
292 1520-0469(2004)061 1816:TNMITT 2.0.CO;2, URL http://dx.doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.
293 Zhang X, Bao JW, Chen B, Grell ED. 2018. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the wrf-arw model. Monthly Weather Review
294
295
296
146(7): 2023–2045, doi:10.1175/MWR-D-17-0356.1, URL https://doi.org/10.1175/MWR-D-17-0356.1.
Zhou B, Simon JS, Chow FK. 2014. The convective boundary layer in the terra incognita. Journal of the Atmospheric Sciences 71(7): 2545–2563, doi:
10.1175/JAS-D-13-0356.1, URL http://dx.doi.org/10.1175/JAS-D-13-0356.1.
c 2018 Royal Meteorological Society
Quarterly Journal of the Royal Meteorological Society
Dynamic blending sub-grid mixing scheme
297
298
12
Zhou B, Xue M, Zhu K. 2017. A grid-refinement-based approach for modeling the convective boundary layer in the gray zone: A pilot study. Journal of the
Atmospheric Sciences 74(11): 3497–3513, doi:10.1175/JAS-D-16-0376.1, URL https://doi.org/10.1175/JAS-D-16-0376.1