Alexander, M. J., and H. Teitelbaum, 2011: Three-dimensional properties of Andes mountain waves observed by satellite: A case study, J. Geophys. Res. Atmos., 116, D23110, https://doi.org/10.1029/2011JD016151.
Alexander, M. J., and coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc, 136, 1103–1124. https://doi.org/10.1002/qj.637.
Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.
Beljaars, A. C. M., 1994: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270, https://doi.org/10.1002/qj.49712152203.
Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow, J. Fluid Mech., 27, 513–539, https://doi.org/10.101 /S0022112067000515.
Broad, A. S., 1995: Linear theory of momentum fluxes in 3-D flows with turning of the mean wind with height, Quart. J. Roy. Meteor. Soc., 121, 1891–1902, https://doi.org/10.1002/qj.49712152806.
Calvo, N., Garcia, R. R., and D. E. Kinnison, 2017: Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing. Geophy. Res. Lett., 44 3402–3410, https://doi.org/10.1002/2017GL072792. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models, J. Geophys. Res. Atmos., 120, 12,445–12,457, https://doi.org/10.1002/2015JD024230.
Choi, H.‐J., Choi, S.‐J., Koo, M.‐S., Kim, J.‐E., Kwon, Y. C., and S.‐Y. Hong, 2017: Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summer. J. Geophys. Res. Atmos., 122, 10669–10678, https://doi.org/10.1002/2017JD026696.
Cohen, N. Y., Edwin P. G., and B. Oliver, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 3780–3798, https://doi.org/10.1175/JAS-D-12-0346.1.
Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform
625 solutions, J. Atmos. Sci., 72, 2330–2347, https://doi.org/10.1175/JAS-D-14-0147.1.
Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600-2616, http://dx.doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.
Ehard, B., and Coauthors, 2017: Vertical propagation of large-amplitude mountain waves in the vicinity of the polar night jet, J. Geophys. Res. Atmos., 122, 1423–1436, https://doi.org/10.1002/2016JD025621.
Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofysiske Publikasjoner, 22, 1–23, https://doi.org/10.1002/qj.49707934103. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Fritts, D. C., and M. J. Alexander, 2003: Gravity wave 634 dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Cámara, A., and D. J. Murphy, 2017: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results. J. Atmos. Sci., 74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1
Geller, M., Alexander, M. J., Love, P., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A., and Zhou, T., 2013: A Comparison between gravity wave
642 momentum fluxes in observations and climate models. J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1
Gradshteyn, I. S., and I. M. Ryzhik, 2007: Table of Integrals, Series, and Products. Academic Press, Seventh Edition, 1171 pp.
Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces, J. Atmos. Sci., 48, 651–678, https://doi.org/10.1175/1520-649 0469(1991)048<0651:OTCOED>2.0.CO;2.
Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J., 2015: The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO, Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Hong, S.-Y., J. Dudhia, and S. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hong, S.- Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Hong, S.‐Y., Choi, J., Chang, E.‐C., Park, H., and Y.‐J. Kim, 2008: Lower‐tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523–531, https://doi.org/10.1175/2007waf2007030.1.
Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER
668 radiative transfer models. J. Geophys. Res. Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944.
Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., and M. Riese, 2014: Differences in gravity wave drag between realistic oblique and assumed vertical propagation. J. Geophys. Res. Atmos., 119, 10081–10099, https://doi.org/10.1002/2014JD021779.
Kim, Y.‐J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902, https://doi.org/10.1175/1520‐0469(1995)052<1875:IOOGWP>2.0.CO;2. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Kim, Y. -J., and J. D. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking, Quart. J. Roy. Meteor. Soc., 131, 1893–1921, https://doi.org/10.1256/qj.04.160.
Kim, Y.‐J., and S.‐Y. Hong, 2009: Interaction between the orography‐induced gravity wave drag and boundary layer processes in a global atmospheric model, Geophys. Res. Lett., 36, L12809, https://doi.org/10.1029/2008GL037146.
Kim, Y. -J., S. D. Eckermann, and H. Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.– Ocean, 41, 65–98, https://doi.org/10.3137/ao.410105.
Kruse, C. G., R. B. Smith, and S. D. Eckermann, 2016: The mid-latitude lower-stratospheric mountain wave “valve layer”, J. Atmos. Sci., 73, 5081–5100, https://doi.org/10.1175/JAS687D-16-0173.1.
Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. Atmos., 86, 9707–9714, https://doi.org/10.1029/JC086iC10p09707.
Lott, F., 1999: Alleviation of stationary biases in a GCM through a mountain drag parametrization scheme and a simple representation of mountain lift forces. Mon. Wea. Rev., 127, 788-801, https://doi.org/10.1175/1520-0493(1999)127<0788:AOSBIA>2.0.CO;2
Lott, F., and M. Miller, 1997: A new sub-grid orographic drag parameterization: Its formulation and testing, Quart. J. Roy. Meteor. Soc., 123, 101–127, https://doi.org/10.1002/qj.49712353704.
Martin, A., and F. Lott, 2007: Synoptic responses to mountain gravity waves encountering directional critical levels. J. Atmos. Sci., 64, 828-848, https://doi.org/10.1175/JAS3873.1 Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci, 44, 1775–
700 1800, https://doi.org/10.1175/1520‐0469(1987)044<1775:teooeg>2.0.co;2.
McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to high latitudes, J. Climate, 22, 1516–1540, https://doi.org/10.1175/2008JCLI2679.1.
McLandress, C., T. G. Shepherd, S. Polavaparu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802–818, https://doi.org/10.1175/JAS-D-11-0159.1.
Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039, https://doi.org/10.1002/qj.49711247406.
Phillips, D. S., 1984: Analytical surface pressure and drag for linear hydrostatic flow over three dimensional elliptical mountains, J. Atmos. Sci., 41, 1073–1084, https://doi.org/10.1175/1520-0469(1984)041,1073:ASPADF.2.0.CO;2.
Pithan, F., Shepherd, T. G., Zappa, G., and I. Sandu, 2016: Missing orographic drag leads to climate model biases in jet streams, blocking and storm tracks. Geophy. Res. Lett., 43, 7231–7240, https://doi.org/10.1002/2016GL069551.
Pulido, M., and C. Rodas, 2011: A higher-order ray approximation applied to orographic waves: Gaussian beam approximation, J. Atmos. Sci., 68, 46–60, https://doi.org/10.1175/2010JAS3468.1. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Pulido, M., and J. Thuburn, 2005: Gravity‐wave drag estimation from global analyses using variational data assimilation principles. I: Theory and implementation. Quart. J. Roy. Meteor. Soc, 131, 1821–1840, https://doi.org/10.1256/qj.04.116.
Richardson, M. I., A. D. Toigo, and C. E. Newman, 2007: Planet WRF: A General Purpose, Local to Global Numerical Model for Planetary Atmosphere and Climate Dynamics, J. Geophys. Res. Atmos., 112, E09001, https://doi.org/10.1029/2006JE002825.
Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, and A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation, J. Adv. Model. Earth Syst., 8, 196–211, https://doi.org/10.1002/2015MS000564.
Scheffler, G., and M. Pulido, 2017: Estimation of gravity‐wave parameters to alleviate the delay in the Antarctic vortex breakup in general circulation models. Quart. J. Roy. Meteor. Soc., 143, 2157–2167, https://doi.org/10.1002/qj.3074.
Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography, Quart. J. Roy. Meteor. Soc., 126, 2353–2393, https://doi.org/10.1002/qj.49712656802.
Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections, Nat. Geosci., 7, 703–708, https://doi.org/10.1038/ngeo2253.
Shin, H. H., S.-Y. Hong, J. Dudhia, and Y.-J. Kim, 2010: Orography-induced gravity wave drag parameterization in the global WRF: Implementation and sensitivity to shortwave radiation schemes. Adv. Meteor., 2010, 959014, https://doi.org/10.1155/2010/959014. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Shutts, G., 1995: Gravity-wave drag parameterization over complex terrain: The effect of critical level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121, 1005–1021, https://doi.org/10.1002/qj.49712152504.
Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 1434–1446, https://doi.org/10.1175/2009JCLI3167.1
Sigmond, M., and T. G. Shepherd, 2014: Compensation between resolved wave driving and parameterized orographic gravity wave driving of the Brewer–Dobson circulation and its response to climate change. J. Climate, 27, 5601–5610, https://doi.org/10.1175/JCLI-D-749 13-00644.1.
Smith, A. K., N. M. Pedatella, D. R. Marsh, and T. Matsuo, 2017: On the dynamical control of the mesosphere–lower thermosphere by the lower and middle atmosphere. J. Atmos. Sci., 74, 933–947, https://doi.org/10.1175/JAS-D-16-0226.1
Teixeira, M. A. C., and P. M. A. Miranda, 2006: A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains. Quart. J. Roy. Meteor. Soc., 132, 2439–2458, https://doi.org/10.1256/qj.05.220.
Teixeira, M. A. C., and P. M. A. Miranda, 2009: On the momentum fluxes associated with mountain waves in directionally sheared flows, J. Atmos. Sci., 66, 3419–3433, https://doi.org/ 10.1175/2009JAS3065.1.
Teixeira, M. A. C., and C. L. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. European Journal of Mechanics & Fluids B: Fluids, 47, 16-31, https://doi.org/10.1016 /j.euromechflu.2014.02.004. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Tewari, M., and coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
van Niekerk, A., Scinocca, J. F., and T. G. Shepherd, 2017: The modulation of stationary waves, and their response to climate change, by parameterized orographic drag. J. Atmos.
767 Sci., 74, 2557–2574, https://doi.org/10.1175/JAS-D-17-0085.1.
Webster, S., Brown, A. R., Cameron, D. R., and C. P. Jones, 2003: Improvements to the representation of orography in the met office unified model. Quart. J. Roy. Meteor. Soc, 129, 1989–2010, https://doi.org/10.1256/qj.02.133.
Xu, X., Y. Wang, and M. Xue, 2012: Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains, J. Atmos. Sci., 69, 3733−3744,
https://doi.org/10.1175/JAS-D-12-044.1.
Xu, X., Xue, M., and Y. Wang, 2013: Gravity wave momentum flux in directional shear flows over three-dimensional mountains: Linear and nonlinear numerical solutions as compared to linear analytical solutions. J. Geophy. Res. Atmos, 118, 7670–7681, https://doi.org/10.1002/jgrd.50471.
Xu, X., J. Song, Y. Wang, and M. Xue, 2017a: Quantifying the Effect of Horizontal Propagation of Three-Dimensional Mountain Waves on the Wave Momentum Flux Using Gaussian Beam Approximation, J. Atmos. Sci., 74, 1783–1798, https://doi.org/10.1175/JAS-D-16-781 0275.1.
Xu, X., Shu, S., and Y. Wang, 2017b: Another look on the structure of mountain waves: A spectral perspective. Atmos. Res., 191, 156–163, https://doi.org/10.1016/j.atmosres.2017.03.015. Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-18-0365.1.
Xu, X., Y. Tang, Y. Wang, and M. Xue, 2018: 784 Directional absorption of mountain waves and its influence on the wave momentum transport in the Northern Hemisphere. J. Geophy. Res. Atmos., 123, 2640-2654, https://doi.org/10.1002/2017JD027968.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513, https://doi.org/10.1175/MWR-D-10-05091.1.
Zhong, S., and Z. Chen, 2015: Improved wind and precipitation forecasts over South China using a modified orographic drag parameterization scheme. J. Meteor. Res., 29, 132–143, https://doi.org/10.1007/s13351‐014‐4934‐1.