Arakawa, A. and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-488scale environment, Part I. J. Atmos. Sci., 31, 674-701.489Arakawa, A. and C. Wu, 2013: A unified representation of deep moist convection in numerical 490modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992.491Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell , F. Vitart and492G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF 493model: from synoptic to decadal time-scales. Q. J. R. Meterol. Soc., 134, 1337-1351.494Cardoso-Bihlo, E., B. Khouider, C. Schumacher, and M. De La Chevrotiere, 2019: Using radar 495datato calibrate a stochastic parameterization of organized convection. J. Adv. Model. 496Earth Syst., 11,10.1029/2018MS001537.497Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 2014. 498arXiv:1412.6980v9.499Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke (2015), 500Mechanisms of convective cloud organization by cold pools over tropical warm ocean 501during the AMIE/DYNAMO field campaign, J. Adv. Model. Earth Syst., 7(2),357-381,502doi: 10.1002/2014MS000384.503
24Gehlot, S., and J. Quaas, 2012:Convection-climate feedbacks in ECHAM5 general circulation 504model: A Lagrangian trajectory perspective of cirrus cloud life cycle, J. Climate, 25, 5055241-5259.506Gentine P, Pritchard M, Rasp S, Reinaudi G, Yacalis G(2018) Could machine learning break 507the convection parameterization deadlock? Geophys Res Lett45, 5742–5751.508Gerard, L., 2015: Bulk mass-flux perturbation formulation for a unified approach of deep 509convection at high resolution. Mon. Wea. Rev., 143, 4038–4063.510Goswami B., B. Khouider, R. Phani, P. Mukhopadhyay andA. J. Majda, 2017: Implementation 511and calibration of a stochastic multicloudconvective parameterization in the NCEP 512climate forecast system (CFSv2). J Adv Model Earth Syst., 9(3), 1721-1739.513Gross, M., H. Wan, P.J. Rasch, P.M. Caldwell, D.L. Williamson, D. Klocke, C. Jablonowski, 514D.R. Thatcher, N. Wood, M. Cullen, B. Beare, M. Willett, F. Lemarié, E. Blayo, S. 515Malardel, P. Termonia, A. Gassmann, P.H. Lauritzen, H. Johansen, C.M. Zarzycki, K. 516Sakaguchi, and R. Leung, 2018: Physics–dynamics coupling in weather, climate, and 517earth system models: Challenges and recent progress. Mon. Wea. Rev.,146, 3505–3544.518Hólm, E., R. Forbes, S. Lang, L. Magnusson and S. Malardel, 2016: New model cycle brings 519higher resolution. ECMWF NewsletterNo. 147, 14–19. 520Hagos, S., Feng, Z., Landu, K., & Long, C. N. (2014). Advection, moistening, and shallow-to-521deep convection transitions during the initiationand propagation of Madden-Julian 522Oscillation. J. Adv. Model. Earth Syst., 6(3),938-949. <Go to 523ISI>://WOS:000344387900024524
25Hagos, S., Feng, Z., Burleyson, C. D., Lim, K.-S. S., Long, C. N., Wu, D., & Thompson, G. 525(2014). Evaluation of convection-permitting model simulations of cloud populations 526associated with the Madden-Julian Oscillation using data collected during the 527AMIE/DYNAMO field campaign. J. Geophys. Res. Atmos, 119(21),12052-12068. 528Hagos, S., Feng, Z., Plant, R. S., Houze, R. A., & Xiao, H. (2018). A stochastic framework for 529modeling the population dynamics of convective clouds. J. Adv. Model. Earth Syst., 10, 530448–465. doi:10.1002/2017MS001214531Jones, T. R., and D. A. Randall, 2011: Quantifying the limits of convective parameterizations, J. 532Geophys. Res., 116, D08210, doi:10.1029/2010JD014913.533KhouiderB.,J.Biello andA.Majda,2010:A stochastic multicloud model for tropical 534convection.Commun. Math. Sci.,8,187–216.535Khouider, B., 2014: A coarse grained stochastic multi-type particle interacting model536for tropical convection: Nearest neighbor interactions. Commun. Math. Sci., 12, 1379–5371407.538Khouider, B., 2019: Models for tropical climate dynamics: Waves, clouds and precipitation. 539Springer.540Koren, I., L. Oreopoulos, G. Feingold, L. A. Remerand O. Altaratz, 2008: How small is a small 541cloud?, Atmos. Chem. Phys., 8, 3855-3864.542Kumar, V. V., C. Jakob, A. Protat, P. T. May and L. Davies, 2013: The four cumulus cloud 543modes and their progression during rainfall events: A C-band polarimetric radar 544perspective, J. Geophys. Res. Atmos., 118, 8375–8389. 545
26Kumar, V. V., A. Protat, P. T. May, C. Jakob, G. Penide, S. Kumar and L. Davies, 2013: On the 546Effects of Large-Scale Environment and Surface Types on Convective Cloud 547Characteristics over Darwin, Australia, Mon. Wea. Rev., 141, 1358-1374. 548Kumar, V. V., C. Jakob, A. Protat, C. R. Williams and P. T. May,2015: Mass-flux 549characteristics of tropical cumulus clouds from wind profiler observations at Darwin, 550Australia, J. Atmos. Sci., 72, 1837–1855.551Lord and A. Arakawa, 1980: Interaction of acumulus ensemble with the large-scale 552environment.Part II. J. Atmos.Sci., 37, 2677-2692.553Morcrette, C. J. and J. C. Petch, 2010:Analysis of prognostic cloud scheme increments in a 554climatemodel.Q. J. R. Meteorol. Soc. 136,2061–2073.555Neggers, R. A. J., 2015:Exploring bin-macrophysics models for moist convective transport and 556clouds. J. Adv. Model Earth. Syst., 7, 2079-2104.557O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist 558convection: Potential for modeling of climate, climate change, and extreme events. J. 559Adv. Model. Earth Syst., 10, 2548–2563.560Park, S., 2014: A Unified Convection Scheme (UNICON). Part I: Formulation. J. Atmos. Sci.,56171, 3902–3930.562Peters, K., T. Crueger, C. Jakob and B. Möbis, 2017: Improved MJO-simulation in ECHAM6.3 563by coupling a Stochastic MulticloudModel to the convection scheme, J. Adv. Model. 564Earth Syst., 9, 193–219.565
27Peters, O., J.D. Neelin, andS.W. Nesbitt, 2009: Mesoscale convective systems and critical 566clusters. J. Atmos. Sci., 66, 2913–2924.567Plant, R. S., 2010: A review of the theoretical basis for bulk mass flux convective 568parameterization, Atmos. Chem. Phys., 10, 3529-3544. 569Plant R. S., 2012: A new modelling framework for statistical cumulus dynamics, Philos. Trans. 570R. Soc. A, 370, 1041–1060.571Plant R. S. and G. C. Craig, 2008: A stochastic parameterization for deep convection based on 572equilibrium statistics. J. Atmos. Sci., 65, 87-105. 573Powell, S. W., Robert A. Houze, J., & Brodzik, S. R. (2016). Rainfall-Type Categorization of 574Radar Echoes Using Polar Coordinate Reflectivity Data. J. Atmos. Oceanic Technol., 57533(3), 523-538.576Rio, C., A. D. Del Genio and F. Hourdin, 2019: Ongoing breakthroughs in convective 577parameterization, Current Climate Change Reports, 5(2),95-111.Storer, R. L., B. M. 578Griffin, J.Höft, J.K. Weber, E.Raut, V. E. Larson, M. Wangand P. J. Rasch, 2015: 579Parameterizing deep convection using the assumed probability density function method, 580Geosci. Model Dev., 8, 1–19.581Steiner, M., R. A. Houze Jr., and S. E. Yuter. 1995. Climatological characterization of three-582dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor 58334:1978–2007.584Thayer-Calder, K., A. Gettelman, C. Craig, S. Goldhaber, P. A. Bogenschutz, C.-C. Chen,H. 585Morrison, J. Höft, E. Raut, B.M. Griffin, J. K. Weber, V. E. Larson, M. C. Wyant, M. 586
28Wang, Z. Guoand S. J. Ghan, 2015: A unified parameterization of clouds and turbulence 587using CLUBB and subcolumns in the Community Atmosphere Model, Geosci. Model 588Dev., 8, 3801–3821.589Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–5903061.591Weusthoff, T. and T. Hauf, 2008:The life cycle of convective‐shower cells under post‐frontal 592conditions. Q. J. R. Meteorol. Soc., 134,841-857.593Wilson, D. R., A. C. Bushell, A.M. Kerr-Munslow,J. D. Price and C.J. Morcrette, 2008: A 594prognostic cloud fraction and condensation scheme.I: Scheme description. Q. J. R. 595Meteorol. Soc.134,2093–2107.596Wood, R. and P.R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 4800–5974816.598Yano, J.-I.and R. S. Plant, 2019. Why does Arakawa and Schubert's convective quasi-599equilibrium closure not work? Mathematical analysis and implications. Submitted to: J. 600Atmos. Sci..601Yuter, S. E., and R. A. Houze, 1995: Three-Dimensional Kinematic and Microphysical 602Evolution of Florida Cumulonimbus. Part III: Vertical Mass Transport, Mass Divergence, 603and Synthesis. Mon. Wea. Rev., 123,1964-1983.604Yuter, S. E., and R. A. Houze, 1997:Measurements of Raindrop Size Distributions over the 605Pacific Warm Pool and Implications for Z–R Relations. J. Appl. Meteor., 36(7), 847-867.606
29Zhang, G. J. and N. A. McFarlane, 1995:Sensitivity of climate simulations to the 607parameterization ofcumulus convection in the Canadian climate centre general 608circulation model, Atmos.-Ocean, 33,407–446