(1) Chen, M. J.; He, Y. R.; Zhu, J. Q.; Wen, D. S. Investigating the Collector Efficiency of Silver Nanofluids Based Direct Absorption Solar Collectors. Appl. Energy 2016, 181, 65-74, DOI: 10.1016/j.apenergy.2016.08.054.
(2) Colangelo, G.; Favale, E.; Miglietta, P.; de Risi, A.; Milanese, M.; Laforgia, D. Experimental Test of an Innovative High Concentration Nanofluid Solar Collector. Appl. Energy 2015, 154, 874-881, DOI: 10.1016/j.apenergy.2015.05.031.
(3) Mwesigye, A.; Huan, Z. J.; Meyer, J. P. Thermodynamic Optimisation of the Performance of a Parabolic Trough Receiver Using Synthetic Oil-Al2O3 Nanofluid. Appl. Energy 2015, 156, 398-412, DOI: 10.1016/j.apenergy.2015.07.035.
(4) Navas, J.; Sánchez-Coronilla, A.; Martín, E. I.; Teruel, M.; Gallardo, J. J.; Aguilar, T.; Gómez-Villarejo, R.; Alcántara, R.; Fernández-Lorenzo, C.; Piñero, J. C.; Martín-Calleja, J. On the Enhancement of Heat Transfer Fluid for Concentrating Solar Power Using Cu and Ni Nanofluids: An Experimental and Molecular Dynamics Study. Nano Energy 2016, 27, 213-224, DOI: 10.1016/j.nanoen.2016.07.004.
(5) Nguyen, C. T.; Roy, G.; Gauthier, C.; Galanis, N. Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System. Appl. Therm. Eng. 2007, 27, 1501-1506, DOI: 10.1016/j.applthermaleng.2006.09.028.
(6) Buongiorno, J.; Hu, L.-W.; Kim, S. J.; Hannink, R.; Truong, B.; Forrest, E. Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps. Nucl. Technol. 2008, 162, 80-91, DOI: 10.13182/NT08-A3934.
(7) Ercole, D.; Manca, O.; Vafai, K. An Investigation of Thermal Characteristics of Eutectic Molten Salt-Based Nanofluids. Int. Commun. Heat Mass Transfer 2017, 87, 98-104, DOI: 10.1016/j.icheatmasstransfer.2017.06.022.
(8) Khanafer, K.; Vafai, K. A Review on the Applications of Nanofluids in Solar Energy Field. Renewable Energy 2018, 123, 398-406, DOI: 10.1016/j.renene.2018.01.097.
(9) Sani, E.; Papi, N.; Mercatelli, L.; Zyla, G. Graphite/Diamond Ethylene Glycol-Nanofluids for Solar Energy Applications. Renewable Energy 2018, 126, 692-698, DOI: 10.1016/j.renene.2018.03.078.
(10) Sani, E.; Vallejo, J. P.; Cabaleiro, D.; Lugo, L. Functionalized Graphene Nanoplatelet-Nanofluids for Solar Thermal Collectors. Sol. Energy Mater. Sol. Cells 2018, 185, 205-209, DOI: 10.1016/j.solmat.2018.05.038.
(11) Fernández, A. G.; Gomez-Vidal, J.; Oró, E.; Kruizenga, A.; Solé, A.; Cabeza, L. F. Mainstreaming Commercial CSP Systems: A Technology Review. Renewable Energy 2019, 140, 152-176, DOI: 10.1016/j.renene.2019.03.049.
(12) Bellos, E.; Tzivanidis, C. Thermal Efficiency Enhancement of Nanofluid-Based Parabolic Trough Collectors. J. Therm. Anal. Calorim. 2019, 135 (1), 597-608, DOI: 10.1007/s10973-018-7056-7.
(13) Gomez-Villarejo, R.; Martin, E. I.; Sanchez-Coronilla, A.; Aguilar, T.; Gallardo, J. J.; Martinez-Merino, P.; Carrillo-Berdugo, I.; Alcantara, R.; Fernandez-Lorenzo, C.; Navas, J. Towards the Improvement of the Global Efficiency of Concentrating Solar Power Plants by Using Pt-Based Nanofluids: The Internal Molecular Structure Effect. Appl. Eneryg 2018, 228, 2262-2274, DOI: 10.1016/j.apenergy.2018.07.062.
(14) Yasinskiy, A.; Navas, J.; Aguilar, T.; Alcantara, R.; Gallardo, J. J.; Sanchez-Coronilla, A.; Martin, E. I.; De Los Santos, D.; Fernandez-Lorenzo, C. Dramatically Enhanced Thermal Properties for TiO2-Based Nanofluids for Being Used as Heat Transfer Fluids in Concentrating Solar Power Plants. Renewable Energy 2018, 119, 809-819, DOI: 10.1016/j.renene.2017.10.057.
(15) Choi, S. U. S. In Enhancing Thermal Conductivity of Fluids with Nanoparticles, 1995 ASME Int Mech Eng Congr Expo, ASME: 1995; pp 99-105.
(16) Chen, L. F.; Xie, H. Q.; Li, Y.; Yu, W. Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction. Thermochim. Acta 2008, 477 (1-2), 21-24, DOI: 10.1016/j.tca.2008.08.001.
(17) Xuan, Y. M.; Li, Q. Heat Transfer Enhancement of Nanofluids. Int. J. Heat Fluid Flow 2000, 21 (1), 58-64, DOI: 10.1016/S0142-727x(99)00067-3.
(18) Fowkes, F. M. Attractive Forces at Interfaces. Ind. Eng. Chem. 1964, 56 (12), 40-&, DOI: 10.1021/ie50660a008.
(19) Owens, D. K.; Wendt, R. C. Estimation of Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13 (8), 1741-1747, DOI: 10.1002/app.1969.070130815.
(20) Owens, D. K. Some Thermodynamic Aspects of Polymer Adhesion. J. Appl. Polym. Sci. 1970, 14 (7), 1725-&, DOI: 10.1002/app.1970.070140706.
(21) Navas, J.; Martinez-Merino, P.; Sanchez-Coronilla, A.; Gallardo, J. J.; Alcantara, R.; Martin, E. I.; Pinero, J. C.; Leon, J. R.; Aguilar, T.; Toledo, J. H.; Fernandez-Lorenzo, C. MoS2 Nanosheets vs. Nanowires: Preparation and a Theoretical Study of Highly Stable and Efficient Nanofluids for Concentrating Solar Power. J. Mater. Chem. A 2018, 6 (30), 14919-14929, DOI: 10.1039/c8ta03817a.
(22) Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J.; Ajayan, P. M. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Lett. 2015, 15 (8), 5449-5454, DOI: 10.1021/acs.nanolett.5b01842.
(23) Gomez-Villarejo, R.; Aguilar, T.; Hamze, S.; Estelle, P.; Navas, J. Experimental Analysis of Water-Based Nanofluids Using Boron Nitride Nanotubes with Improved Thermal Properties. J. Mol. Liq. 2019, 277, 93-103, DOI: 10.1016/j.molliq.2018.12.093.
(24) Halelfadl, S.; Estelle, P.; Aladag, B.; Doner, N.; Mare, T. Viscosity of Carbon Nanotubes Water-Based Nanofluids: Influence of Concentration and Temperature. Int. J. Therm. Sci. 2013, 71, 111-117, DOI: 10.1016/j.ijthermalsci.2013.04.013.
(25) Schutte, W. J.; Deboer, J. L.; Jellinek, F. Crystal-Structures of Tungsten Disulfide and Diselenide. J. Solid State Chem. 1987, 70 (2), 207-209, DOI: 10.1016/0022-4596(87)90057-0.
(26) Hess, P. Strength of Semiconductors, Metals, and Ceramics Evaluated by a Microscopic Cleavage Model with Morse-Type and Lennard-Jones-Type Interaction. J. Appl. Phys. 2014, 116 (5), 053515, DOI: 10.1063/1.4892016.
(27) Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. Development of the Transferable Potentials for Phase Equilibria Model for Hydrogen Sulfide. J. Phys. Chem. B 2015, 119 (23), 7041-7052, DOI: 10.1021/acs.jpcb.5b02536.
(28) Smith, W.; Forester, T. R. DL_POLY_2.0: A General-Purpose Parallel Molecular Dynamics Simulation Package. J. Mol. Graphics 1996, 14 (3), 136-141, DOI: 10.1016/S0263-7855(96)00043-4.
(29) The CP2K Developers Group., Available at: https://www.cp2k.org/ (accessed 3 April 2019).
(30) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167 (2), 103-128, DOI: 10.1016/j.cpc.2004.12.014.
(31) VandeVondele, J.; Hutter, J. An Efficient Orbital Transformation Method for Electronic Structure Calculations. J. Chem. Phys. 2003, 118 (10), 4365-4369, DOI: 10.1063/1.1543154.
(32) Zhang, Y. K.; Yang, W. T. Comment on "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett. 1998, 80 (4), 890-890, DOI: 10.1103/PhysRevLett.80.890.
(33) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456-1465, DOI: 10.1002/jcc.21759.
(34) VandeVondele, J.; Hutter, J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127 (11), 114105, DOI: 10.1063/1.2770708.
(35) Goedecker, S.; Teter, M.; Hutter, J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54 (3), 1703-1710, DOI: 10.1103/PhysRevB.54.1703.
(36) Nose, S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J. Chem. Phys. 1984, 81 (1), 511-519, DOI: 10.1063/1.447334.
(37) Kresse, G.; Furthmuller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15-50, DOI: 10.1016/0927-0256(96)00008-0.
(38) Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169-11186, DOI: 10.1103/PhysRevB.54.11169.
(39) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868, DOI: 10.1103/PhysRevLett.77.3865.
(40) Blochl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953-17979, DOI: 10.1103/PhysRevB.50.17953.
(41) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758-1775, DOI: 10.1103/PhysRevB.59.1758.
(42) Wu, Z. Z.; Wang, D. Z.; Sun, A. K. Surfactant-Assisted Preparation of Hexagonal Molybdenum Disulfide Nanoparticles. Mater. Let.t 2009, 63 (29), 2591-2593, DOI: 10.1016/j.matlet.2009.07.050.
(43) Zhang, X. H.; Lei, W. N.; Ye, X.; Wang, C.; Lin, B. C.; Tang, H.; Li, C. S. A Facile Synthesis and Characterization of Graphene-Like WS2 Nanosheets. Mater. Lett. 2015, 159, 399-402, DOI: 10.1016/j.matlet.2015.07.044.
(44) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331 (6017), 568-571, DOI: 10.1126/science.1194975.
(45) Chandrasekar, M.; Suresh, S.; Senthilkumar, T. Mechanisms Proposed Through Experimental Investigations on Thermophysical Properties and Forced Convective Heat Transfer Characteristics of Various Nanofluids - A Review. Renewable Sustainable Energy Rev. 2012, 16 (6), 3917-3938, DOI: 10.1016/j.rser.2012.03.013.
(46) Pastoriza-Gallego, M. J.; Casanova, C.; Páramo, R.; Barbés, B.; Legido, J. L.; Piñeiro, M. M. A Study on Stability and Thermophysical Properties (Density and Viscosity) of Al2O3 in Water Nanofluid. J. Appl. Phys. 2009, 106 (6), 064301, DOI: 10.1063/1.3187732.
(47) Eagleson, M. Concise Encyclopedia Chemistry, Walter de Gruyter: 1994; p 1201.
(48) Estelle, P.; Cabaleiro, D.; Zyla, G.; Lugo, L.; Murshed, S. M. S. Current Trends in Surface Tension and Wetting Behavior of Nanofluids. Renewable Sustainable Energy Rev 2018, 94, 931-944, DOI: 10.1016/j.rser.2018.07.006.
(49) Akyurek, E. F.; Gelis, K.; Sahin, B.; Manay, E. Experimental Analysis for Heat Transfer of Nanofluid With Wire Coil Turbulators in a Concentric Tube Heat Exchanger. Results Phys. 2018, 9, 376-389, DOI: 10.1016/j.rinp.2018.02.067.
(50) Fang, X. D.; Xu, Y.; Zhou, Z. R. New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations. Nucl. Eng. Des. 2011, 241 (3), 897-902, DOI: 10.1016/j.nucengdes.2010.12.019.
(51) Naumkin, A. K.-V. A. V. G., S. W.; C. J. Powell. in NIST Standard Reference Database 20, Version 4.1, Gaithersburg 2012.
(52) Chen, W. S.; Yu, X.; Zhao, Z. X.; Ji, S. C.; Feng, L. G. Hierarchical Architecture of Coupling Graphene and 2D WS2 for High-Performance Supercapacitor. Electrochim. Acta 2019, 298, 313-320, DOI: 10.1016/j.electacta.2018.12.096.
(53) Hu, K.; Zhou, J. H.; Yi, Z. X.; Ye, C. L.; Dong, H. Y.; Yan, K. Facile Synthesis of Mesoporous WS2 for Water Oxidation. Appl. Surf. Sci. 2019, 465, 351-356, DOI: 10.1016/j.apsusc.2018.09.179.