1. Al-Obaidi, H.; Buckton, G. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech 2009, 10, 1172-1177, doi:10.1208/s12249-009-9319-x.
2. Al-Obaidi, H.; Brocchini, S.; Buckton, G. Anomalous properties of spray dried solid dispersions. J Pharm Sci 2009, 98, 4724-4737, doi:10.1002/jps.21782.
3. Al-Obaidi, H.; Lawrence, M.J.; Shah, S.; Moghul, H.; Al-Saden, N.; Bari, F. Effect of drug-polymer interactions on the aqueous solubility of milled solid dispersions. Int J Pharm 2013, 446, 100-105, doi:10.1016/j.ijpharm.2013.02.009.
4. Barzegar-Jalali, M.; Valizadeh, H.; Shadbad, M.R.S.; Adibkia, K.; Mohammadi, G.; Farahani, A.; Arash, Z.; Nokhodchi, A. Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technol 2010, 197, 150-158, doi:10.1016/j.powtec.2009.09.008.
5. Koutsamanis, I.; Paudel, A.; Nickisch, K.; Eggenreich, K.; Roblegg, E.; Eder, S. Controlled-Release from High-Loaded Reservoir-Type Systems-A Case Study of Ethylene-Vinyl Acetate and Progesterone. Pharmaceutics 2020, 12, doi:10.3390/pharmaceutics12020103.
6. Hussain, A.; Smith, G.; Khan, K.A.; Bukhari, N.I.; Pedge, N.I.; Ermolina, I. Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci 2018, 123, 395-403, doi:10.1016/j.ejps.2018.08.001.
7. Stolle, A.; Schmidt, R.; Jacob, K. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale. Faraday Discuss 2014, 170, 267-286, doi:10.1039/c3fd00144j.
8. Metta, N.; Verstraeten, M.; Ghijs, M.; Kumar, A.; Schafer, E.; Singh, R.; De Beer, T.; Nopens, I.; Cappuyns, P.; Van Assche, I., et al. Model development and prediction of particle size distribution, density and friability of a comilling operation in a continuous pharmaceutical manufacturing process. Int J Pharm 2018, 549, 271-282, doi:10.1016/j.ijpharm.2018.07.056.
9. Hassan, A.S.; Soliman, G.M.; El-Mahdy, M.M.; El-Gindy, G.E.A. Solubilization and Enhancement of Ex Vivo Vaginal Delivery of Progesterone Using Solid Dispersions, Inclusion Complexes and Micellar Solubilization. Curr Drug Deliv 2018, 15, 110-121, doi:10.2174/1567201814666170320142136.
10. Hassan, A.S.; Soliman, G.M.; Ali, M.F.; El-Mahdy, M.M.; El-Gindy, G.E.A. Mucoadhesive tablets for the vaginal delivery of progesterone: in vitro evaluation and pharmacokinetics/pharmacodynamics in female rabbits. Drug Dev Ind Pharm 2018, 44, 224-232, doi:10.1080/03639045.2017.1386203.
11. Vegeto, E.; Shahbaz, M.M.; Wen, D.X.; Goldman, M.E.; O'Malley, B.W.; McDonnell, D.P. Human progesterone receptor A form is a cell-and promoter-specific repressor of human progesterone receptor B function. Molecular Endocrinology 1993, 7, 1244-1255.
12. de Lignieres, B.; Dennerstein, L.; Backstrom, T. Influence of route of administration on progesterone metabolism. Maturitas 1995, 21, 251-257, doi:https://doi.org/10.1016/0378-5122(94)00882-8.
13. Nandi, I.; Bateson, M.; Bari, M.; Joshi, H.N. Synergistic effect of PEG-400 and cyclodextrin to enhance solubility of progesterone. AAPS PharmSciTech 2003, 4, 1, doi:10.1208/pt040101.
14. Kincl, F.A.; Ciaccio, L.A.; Benagiano, G. Increasing oral bioavailability of progesterone by formulation. Journal of Steroid Biochemistry 1978, 9, 83-84, doi:https://doi.org/10.1016/0022-4731(78)90106-1.
15. Morville, R.; Dray, F.; Reynier, J.; Barrat, J. [The bioavailability of natural progesterone given by mouth. Measurement of steroid concentrations in plasma, endometrium and breast tissue]. J Gynecol Obstet Biol Reprod (Paris) 1982, 11, 355-363.
16. Maxson, W.S.; Hargrove, J.T. Bioavailability of oral micronized progesterone**Supported in part by a grant from PMS (Premenstrual Syndrome) Action, Madison, Wisconsin. Fertility and Sterility 1985, 44, 622-626, doi:https://doi.org/10.1016/S0015-0282(16)48977-6.
17. Hargrove, J.T.; Maxson, W.S.; Colston Wentz, A. Absorption of oral progesterone is influenced by vehicle and particle size. American Journal of Obstetrics and Gynecology 1989, 161, 948-951, doi:https://doi.org/10.1016/0002-9378(89)90759-X.
18. Simon, J.A.; Robinson, D.E.; Andrews, M.C.; Hildebrand, J.R.; Rocci, M.L.; Blake, R.E.; Hodgen, G.D. The absorption of oral micronized progesterone: the effect of food, dose proportionality, and comparison with intramuscular progesterone*†*Supported in part by a grant from Besins-Iscovesco, Paris, France.†Presented in part at the 35th Annual Meeting of the Society for Gynecologic Investigation, Baltimore, Maryland, March 17 to 20, 1988. Fertility and Sterility 1993, 60, 26-33, doi:https://doi.org/10.1016/S0015-0282(16)56031-2.
19. Al-Obaidi, H.; Kowalczyk, R.M.; Kalgudi, R.; Zariwala, M.G. Griseofulvin solvate solid dispersions with synergistic effect against fungal biofilms. Colloids Surf B Biointerfaces 2019, 184, 110540, doi:10.1016/j.colsurfb.2019.110540.
20. Al-Obaidi, H.; Ke, P.; Brocchini, S.; Buckton, G. Characterization and stability of ternary solid dispersions with PVP and PHPMA. International journal of pharmaceutics 2011, 419, 20-27, doi:10.1016/j.ijpharm.2011.06.052.
21. Hansen, C. Hansen Solubility Parameters: A User's Handbook, Second Edition; CRC Press: Boca Raton, Florida, USA, 2012; 10.1201/9781420006834pp. 546.
22. Stefanis, E.; Panayiotou, C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. International Journal of Thermophysics 2008, 29, 568-585, doi:10.1007/s10765-008-0415-z.
23. Tsutsumi, S.; Kondo, K.; Kato, Y.; Fujiwara, N.; Yamamoto, H. Determination of Hansen solubility parameters of particles using a capillary penetration method. Chemical Physics 2019, 521, 115-122, doi:https://doi.org/10.1016/j.chemphys.2019.01.018.
24. Archer, W.L. Hansen solubility parameters for selected cellulose ether derivatives and their use in the pharmaceutical industry. Drug Development and Industrial Pharmacy 1992, 18, 599-616, doi:10.3109/03639049209043713.
25. Marsac, P.J.; Konno, H.; Rumondor, A.C.; Taylor, L.S. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res 2008, 25, 647-656, doi:10.1007/s11095-007-9420-3.
26. Djuris, J.; Nikolakakis, I.; Ibric, S.; Djuric, Z.; Kachrimanis, K. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 2013, 84, 228-237, doi:10.1016/j.ejpb.2012.12.018.
27. Varghese, S.; Ghoroi, C. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int J Pharm 2017, 533, 145-155, doi:10.1016/j.ijpharm.2017.09.062.
28. Gupta, P.; Thilagavathi, R.; Chakraborti, A.K.; Bansal, A.K. Role of molecular interaction in stability of celecoxib-PVP amorphous systems. Mol Pharm 2005, 2, 384-391, doi:10.1021/mp050004g.
29. Yang, K.Y.; Glemza, R.; Jarowski, C.I. Effects of amorphous silicon dioxides on drug dissolution. J Pharm Sci 1979, 68, 560-565, doi:10.1002/jps.2600680511.
30. Bounartzi, M.; Panagopoulou, A.; Kantiranis, N.; Malamataris, S.; Nikolakakis, I. Effect of plasticiser type on the hot melt extrusion of venlafaxine hydrochloride. J Pharm Pharmacol 2014, 66, 297-308, doi:10.1111/jphp.12117.
31. Kolter, K.; Karl, M.; Gryczke, A.; Ludwigshafen am Rhein, B. Hot-melt extrusion with BASF pharma polymers: extrusion compendium; BASF SE: Ludwigshafen, Germany, 2012.
32. Lehmkemper, K.; Kyeremateng, S.O.; Bartels, M.; Degenhardt, M.; Sadowski, G. Physical stability of API/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm 2018, 124, 147-157, doi:10.1016/j.ejpb.2017.12.002.
33. Szcześniak, L.; Rachocki, A.; Tritt-Goc, J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 2008, 15, 445-451, doi:10.1007/s10570-007-9192-2.
34. Le Questel, J.Y.; Boquet, G.; Berthelot, M.; Laurence, C. Hydrogen bonding of progesterone: a combined theoretical, spectroscopic, thermodynamic, and crystallographic database study. J Phys Chem B 2000, 104, 11816-11823, doi:10.1021/jp002213g.
35. Sheskey, P.J.; Cook, W.G.; Cable, C.G.; American Pharmacists, A. Handbook of pharmaceutical excipients; Pharmaceutical Press: London, UK, 2017.
36. Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)(4) and R '' Si(OR ')(3) precursors. J Mol Struct 2009, 919, 140-145, doi:10.1016/j.molstruc.2008.08.025.
37. Tripathi, R.; Biradar, S.V.; Mishra, B.; Paradkar, A.R. Study of polymorphs of progesterone by novel melt sonocrystallization technique: a technical note. AAPS PharmSciTech 2010, 11, 1493-1498, doi:10.1208/s12249-010-9508-7.
38. Sarkar, A.; Ragab, D.; Rohani, S. Polymorphism of Progesterone: A New Approach for the Formation of Form II and the Relative Stabilities of Form I and Form II. Cryst Growth Des 2014, 14, 4574-4582, doi:10.1021/cg5006727.
39. Bernabei, M.T.; Gamberini, G.; Cameroni, R. [Polymorphism of progesterone. 3. Solubility and thermodynamic studies of 2 crystalline forms]. Farmaco Prat 1974, 29, 184-191.
40. Cameroni, R.; Gamberini, G.; Bernabei, M.T.; Facchini, M. [Polymorphism of progesterone. I. Preparation and characterization of polymorphic forms]. Farmaco Prat 1973, 28, 621-635.
41. Cameroni, R.; Gamberini, G.; Bernabei, M.T. [Polymorphism of progesterone. II. Use of differential calorimetry in the study of crystalline forms]. Farmaco Prat 1973, 28, 636-641.
42. Lancaster, R.W.; Karamertzanis, P.G.; Hulme, A.T.; Tocher, D.A.; Lewis, T.C.; Price, S.L. The polymorphism of progesterone: stabilization of a 'disappearing' polymorph by co-crystallization. J Pharm Sci 2007, 96, 3419-3431, doi:10.1002/jps.20983.
43. Legendre, B.; Feutelais, Y.; Defossemont, G. Importance of heat capacity determination in homogeneous nucleation: application to progesterone. Thermochimica Acta 2003, 400, 213-219, doi:https://doi.org/10.1016/S0040-6031(02)00492-6.
44. Drebushchak, V.A.; Shakhtshneider, T.P.; Apenina, S.A.; Medvedeva, A.S.; Safronova, L.P.; Boldyrev, V.V. Thermoanalyticalinvestigation of drug–excipient interaction. Journal of Thermal Analysis and Calorimetry 2006, 86, 303-309, doi:10.1007/s10973-005-7440-y.
45. Najib, N.M.; Suleiman, M.; Malakh, A. Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions. International Journal of Pharmaceutics 1986, 32, 229-236, doi:https://doi.org/10.1016/0378-5173(86)90183-3.
46. Nikolakakis, I.; Tsarvouli, K.; Malamataris, S. Water retention and drainage in different brands of microcrystalline cellulose: effect of measuring conditions. Eur J Pharm Biopharm 2006, 63, 278-287, doi:10.1016/j.ejpb.2006.01.003.
47. Kachrimanis, K.; Nikolakakis, I.; Malamataris, S. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: influences of interparticle bonding. J Pharm Sci 2003, 92, 1489-1501, doi:10.1002/jps.10403.
48. Stiopkin, I.V.; Weeraman, C.; Pieniazek, P.A.; Shalhout, F.Y.; Skinner, J.L.; Benderskii, A.V. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 2011, 474, 192-195, doi:10.1038/nature10173.