The atmospheric boundary layer and the "gray zone" of turbulence: a critical reviewHonnert, R., Efstathiou, G. A., Beare, R. J., Ito, J., Lock, A., Neggers, R., Plant, R. S. ORCID: https://orcid.org/0000-0001-8808-0022, Shin, H. H., Tomassini, L. and Zhou, B. (2020) The atmospheric boundary layer and the "gray zone" of turbulence: a critical review. Journal of Geophysical Research: Atmospheres, 125 (13). e2019JD030317. ISSN 2169-8996
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1029/2019JD030317 Abstract/SummaryRecent increases in computing power mean that atmospheric models for numerical weather prediction are now able to operate at grid spacings of the order of a few hundred meters, comparable to the dominant turbulence length scales in the atmospheric boundary layer. As a result, models are starting to partially resolve the coherent overturning structures in the boundary layer. In this resolution regime, the so‐called boundary‐layer "gray zone", neither the techniques of high‐resolution atmospheric modeling (a few tens of meters resolution) nor those of traditional meteorological models (a few kilometers resolution) are appropriate because fundamental assumptions behind the parameterizations are violated. Nonetheless, model simulations in this regime may remain highly useful. In this paper, a newly‐formed gray‐zone boundary‐layer community lays the basis for parameterizing gray‐zone turbulence, identifies the challenges in high‐resolution atmospheric modeling and presents different gray‐zone boundary‐layer models. We discuss both the successful applications and the limitations of current parameterization approaches, and consider various issues in extending promising research approaches into use for numerical weather prediction. The ultimate goal of the research is the development of unified boundary‐layer parameterizations valid across all scales.
DownloadsDownloads per month over past year
Adamson, D. S., Belcher, S. E., Hoskins, B. J., & Plant, R. S. (2006). Boundary1145
layer friction in midlatitude cyclones. Q. J. R. Meteorol. Soc., 132 , 101-124.
1146 Arakawa, A., Jung, J.-H., & Wu, C.-M. (2011). Toward uni�cation of the multiscale
1147 modeling of the atmosphere. Atmos. Chem. Phys., 11 (8), 3731{3742.
1148 Arakawa, A., & Wu, C.-M. (2013). A uni�ed representation of deep moist convection
1149 in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70 (7), 1977-
1150 1992.
1151 Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M., Horvath, K., . . .
1152 Schneider, S. (2012, 02). High resolution modelling in complex terrain. Report
{29{
manuscript submitted to JGR
1153 on the HiRCoT 2012 Workshop, Vienna.
1154 Arnold, D., Morton, D., Schicker, I., Seibert, P., Rotach, M., Horvath, K., . . .
1155 Schneider, S. (2014). Issues in high-resolution atmospheric modeling in
1156 complex terrain - the HiRCoT workshop. Croat. Meteor. J., 47 , 311.
1157 Basu, S., Vinuesa, J.-F., & Swift, A. (2008). Dynamic LES modeling of a diurnal cy1158
cle. J. Appl. Meteorol. Climatol., 47 , 1156-1174.
1159 Beare, R. J. (2014). A length scale de�ning partially-resolved boundary-layer turbu1160
lence simulations. Boundary-Layer Meteorol., 151 , 39-55.
1161 Beljaars, A. C. M., Brown, A. R., & Wood, N. (2004). A new parametrization of
1162 turbulent orographic form drag. Q. J. R. Meteorol. Soc., 130 (599), 1327{1347.
1163 Bengtsson, L., Tijm, S., Vana, F., & Svensson, G. (2012). Impact of
ow-dependent
1164 horizontal di�usion on resolved convection in AROME. J. Appl. Meteorol. Cli-
1165 matol., 51 (1), 54-67.
1166 Bhattacharya, R., & Stevens, B. (2016). A two turbulence kinetic energy model as
1167 a scale adaptive approach to modeling the planetary boundary layer. J. Adv.
1168 Model. Earth Syst., 8:1 , 224-243.
1169 Bony, S., Stevens, B., Ament, F., Bigorre, S., Chazette, P., Crewell, S., . . . Wirth,
1170 M. (2017). EUREC4A: A �eld campaign to elucidate the couplings between
1171 clouds, convection and circulation. Surveys in Geophysics, 38 , 1529{1568.
1172 Boutle, I. A., Belcher, S. E., & Plant, R. S. (2015). Friction in mid-latitude cyclones:
1173 an Ekman-PV mechanism. Atmos. Sci. Lett., 16 , 103-109.
1174 Boutle, I. A., Eyre, J. E. J., & Lock, A. P. (2014). Seamless stratocumulus simula1175
tion across the turbulent grey zone. Mon. Wea. Rev., 142 , 1655-1668.
1176 Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent Lagrangian
1177 dynamic model for large eddy simulation of complex turbulent
ows. Phys.
1178 Fluids, 17 (2), 025105. doi: 10.1063/1.1839152
1179 Brast, M., Schemann, V., & Neggers, R. A. J. (2018). Investigating the scale1180
adaptivity of a size-�ltered mass
ux parameterization in the gray zone of
1181 shallow cumulus convection. J. Atmos. Sci., 75 , 1195-1214.
1182 Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Golaz, J.-C.,
1183 Khairoutdinov, M., . . . Stevens, B. (2002). Large-eddy simulation of the
1184 diurnal cycle of shallow cumulus convection over land. Q. J. R. Meteorol. Soc.,
1185 128 , 1075-1093.
1186 Bryan, G. H., & Morrison, H. (2012). Sensitivity of a simulated squall line to hori1187
zontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140 ,
1188 202-225.
1189 Cheinet, S. (2003). A Multiple Mass-Flux Parameterization for the Surface-
1190 Generated Convection. Part I: Dry Plumes. J. Atmos. Sci., 60 , 2313-2327.
1191 Chen, R., & Tomassini, L. (2015). The role of moisture in summertime low-level jet
1192 formation and associated rainfall over the East Asian monsoon region. J. At-
1193 mos. Sci., 72 , 3871-3890.
1194 Ching, J., Rotunno, R., LeMone, M., Martilli, A., Kosovic, B., Jimenez, P. A., &
1195 Dudhia, J. (2014). Convectively induced secondary circulations in �ne-grid
1196 mesoscale numerical weather prediction models. Mon. Wea. Rev., 142:9 .
1197 Chow, F. K., Street, R. L., Xue, M., & Ferziger, J. H. (2005). Explicit �ltering and
1198 reconstruction turbulence modeling for large-eddy simulation of neutral bound1199
ary layer
ow. J. Atmos. Sci., 62 (7), 2058-2077. doi: 10.1175/JAS3456.1
1200 Clarke, R. H., Dyer, A. J., Reid, D. G., & Troup, A. J. (1971). The Wangara exper1201
iment: Boundary layer data. Division Meteorological Physics Paper, CSIRO,
1202 19 , Australia.
1203 Couvreux, F., Guichard, F., Redelsperger, J.-L., Kiemle, C., Masson, V., Lafore,
1204 J.-P., & Flamant, C. (2005). Water vapour variability within a convective
1205 boundary-layer assessed by large-eddy simulations and IHOP2002 observations.
1206 Q. J. R. Meteorol. Soc., 131 , 2665-2693.
1207 Couvreux, F., Hourdin, F., & Rio, C. (2010). Resolved versus parametrized
{30{
manuscript submitted to JGR
1208 boundary-layer plumes. Part I: A parametrization-oriented conditional sam1209
pling in large-eddy simulations. Boundary-layer Meteorol., 134 (3), 441{458.
1210 Craig, G. C., & Dornbrack, A. (2008). Entrainment in cumulus clouds: What resolu1211
tion is cloud-resolving? J. Atmos. Sci., 65 , 3978-3988.
1212 De Roode, S. R., Duynkerke, P. G., & Jonker, H. J. J. (2004). Large-eddy simula1213
tion : How large is large enough? J. Atmos. Sci., 61 , 403-421.
1214 de Roode, S. R., Frederikse, T., Siebesma, A. P., Ackerman, A. S., Field, P. R., Hill,
1215 A., . . . L.Tomassini (2019). Turbulent transport in the grey zone: A large1216
eddy simulation intercomparison study of the CONSTRAIN cold air outbreak
1217 case. J. Adv. Model. Earth Syst., 11 , 597{623.
1218 Deardor�, J. W. (1972). Theoretical expression for the counter gradient vertical
ux.
1219 J. Geophys. Res., 77 , 5900-5904.
1220 Deardor�, J. W. (1980). Stratocumulus-capped mixed layers derived from a three1221
dimensional model. Boundary-Layer Meteorol., 18 , 495{527.
1222 Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., & Jonker, H. J. J. (2013).
1223 Stochastic parameterization of shallow cumulus convection estimated from
1224 high-resolution model data. Theor. Comp. Fluid Dyn., 27 (1-2), 133-148.
1225 Retrieved from http://dx.doi.org/10.1007/s00162-012-0281-y doi:
1226 10.1007/s00162-012-0281-y
1227 Du�ourg, F., Nuissier, O., Ducrocq, V., Flamant, C., Chazette, P., Delano�e, J., . . .
1228 Bock, O. (2016). O�shore deep convection initiation and maintenance dur1229
ing HyMeX IOP16a heavy precipitation event. Q. J. R. Meteorol. Soc., 142 ,
1230 259274.
1231 Efstathiou, G. A., & Beare, R. J. (2015). Quantifying and improving sub-grid di�u1232
sion in the boundary-layer grey zone. Q. J. R. Meteorol. Soc., 141:693 .
1233 Efstathiou, G. A., Beare, R. J., Osborne, S., & Lock., A. P. (2016). Grey zone sim1234
ulations of the morning convective boundary layer development. J. Geophys.
1235 Res. Atmos., 121:9 .
1236 Efstathiou, G. A., & Plant, R. S. (2019). A dynamic extension of the pragmatic
1237 blending scheme for scale-dependent sub-grid mixing. Q. J. R. Meteorol. Soc.,
1238 1-9.
1239 Efstathiou, G. A., Plant, R. S., & Bopape., M. M. (2018). Simulation of an evolving
1240 convective boundary layer using a scale-dependent dynamic smagorinsky model
1241 at near-gray-zone resolutions. J. Appl. Meteorol. Clim., 57 , 21972214.
1242 Field, P. R., Brozkov, R., Chen, M., Dudhia, J., Lac, C., Hara, T., . . . McTaggart-
1243 Cowan, R. (2017). Exploring the convective grey zone with regional simula1244
tions of a cold air outbreak. Q. J. R. Meteorol. Soc., 143 (707), 2537-2555. doi:
1245 10.1002/qj.3105
1246 Field, P. R., Cotton, R. J., McBeath, K., Lock, A. P., Webster, S., & Allan, R. P.
1247 (2014). Improving a convection-permitting model simulation of a cold air
1248 outbreak. Q. J. R. Meteorol. Soc., 140 , 124-138.
1249 Fiori, E., Parodi, A., & Siccardi, F. (2010). Turbulence closure parameterization and
1250 grid spacing e�ects in simulated supercell storms. J. Atmos. Sci., 67 (12), 3870-
1251 3890.
1252 Goger, B., Rotach, M. W., Gohm, A., Fuhrer, O., Stiperski, I., & Holtslag, A. A. M.
1253 (2018). The impact of three-dimensional e�ects on the simulation of turbulence
1254 kinetic energy in a major Alpine valley. Boundary-Layer Meteorol., 168 (1),
1255 1{27.
1256 Green, B. W., & Zhang, F. (2015). Numerical simulations of Hurricane Katrina
1257 (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst., 7 , 142-161. doi:
1258 10.1002/2014MS000399
1259 Hagelin, S., Auger, L., Brovelli, P., & Dupont, O. (2014). Nowcasting with the
1260 AROME model: First results from the high-resolution AROME airport.
1261 Weath. and Forecasting, 29 , 773-787.
1262 Hanley, K. E., Plant, R. S., Stein, T. H. M., Hogan, R. J., Nicol, J. C., Lean, H. W.,
{31{
manuscript submitted to JGR
1263 . . . Clark, P. A. (2014). Mixing-length controls on high-resolution simula1264
tions of convective storms. Q. J. R. Meteorol. Soc., 141 (686), 272-284. doi:
1265 10.1002/qj.2356
1266 Hatlee, S. C., & Wyngaard, J. C. (2007). Improved sub�lter-scale models from the
1267 HATS �eld data. J. Atmos. Sci., 64 , 1694-1705.
1268 Honnert, R., Couvreux, F., Masson, V., & Lancz, D. (2016). Sampling of the struc1269
ture of turbulence : Implications for parameterizations at sub-kilometric scales.
1270 Boundary-Layer Meteorol., 2:27 , doi: 10.3389/feart.2014.00027.
1271 Honnert, R., & Masson, V. (2014). What is the smallest physically ac1272
ceptable scale for 1d turbulence schemes? Front. Earth Sci., 2:27 , doi:
1273 10.3389/feart.2014.00027.
1274 Honnert, R., Masson, V., & Couvreux, F. (2011). A diagnostic for evaluating the
1275 representation of turbulence in atmospheric models at the kilometric scale. J.
1276 Atmos. Sci., 68 , 3112-3131.
1277 Hourdin, F., Couvreux, F., & Menut, L. (2002). Parameterization of the dry convec1278
tive boundary layer based on a mass
ux representation of thermals. J. Atmos
1279 Sci., 59 , 1105-1122.
1280 Huq, S., De Roo, F., Raasch, S., & Mauder, M. (2014). Vertical grid nesting for
1281 improved surface layer resolution in large-eddy simulation. In 21st symp. on
1282 boundary layers and turbulence.
1283 Ito, J., Hayashi, S., Hashimoto, A., Ohtake, H., Uno, F., Yoshimura, H., . . . Ya1284
mada, Y. (2017). Stalled improvement in a numerical weather prediction
1285 model as horizontal resolution increases to the sub-kilometer scale. SOLA, 13 ,
1286 151-156. doi: 10.2151/sola.2017-028
1287 Ito, J., Niino, H., & Nakanishi, M. (2014). Horizontal turbulent di�usion in a con1288
vective mixed layer. J. Fluid Mech, 758 , 553-564. doi: 10.1017/jfm.2014.545
1289 Ito, J., Niino, H., Nakanishi, M., & Moeng, C.-H. (2015). An extension of Mellor-
1290 Yamada model to the terra incognita zone for dry convective mixed layers in
1291 the free convection regime. Boundary-Layer Meteorol., 157(1), 23-43.
1292 Kealy, J., Efstathiou, G. A., & Beare, R. J. (2019). The onset of resolved boundary1293
layer turbulence at grey-zone resolutions. Boundary-Layer Meteorol., 171 , 31{
1294 52.
1295 Kelly, M., Wyngaard, J. C., & Sullivan, P. P. (2009). Application of a sub�lter-scale
1296
ux model over the ocean using OHATS �eld data. J. Atmos. Sci., 66 (10),
1297 3217{3225.
1298 Khouider, B., Biello, J., & Majda, A. (2010). A stochastic multicloud model for
1299 tropical convection. Commun. Math. Sci., 8 , 187216.
1300 Kitamura, Y. (2015). Estimating dependence of the turbulent length scales on model
1301 resolution based on a priori analysis. J. Atmos. Sci., 72 , 750-762.
1302 Kitamura, Y. (2016). Application of the new turbulence length scale for the terra
1303 incognita range to numerical simulations of a convective boundary layer. J.
1304 Metorol. Soc. Japan, 94 , 491-506.
1305 Kleissl, J., Kumar, V., Meneveau, C., & Parlange, M. B. (2006). Numerical study
1306 of dynamic Smagorinsky models in large-eddy simulation of the atmospheric
1307 boundary layer: Validation in stable and unstable conditions. Water Resources
1308 Res., 42 . doi: 10.1029/2005WR004685
1309 Kober, K., & Craig, G. C. (2016). Physically based stochastic perturbations (PSP)
1310 in the boundary layer to represent uncertainty in convective initiation. J. At-
1311 mos. Sci., 73 , 2893-2911.
1312 Kuettner, J. P. (1974). General description and central program of GATE. Bull.
1313 Amer. Meteorol. Soc., 55 , 712-719.
1314 Kurowski, M., & Teixeira, J. (2018). A scale-adaptive turbulent kinetic energy clo1315
sure for the dry convective boundary layer. J. Atmos. Sci., 75(2), 675-690.
1316 Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., . . .
1317 Wautelet, P. (2018). Overview of the Meso-NH model version 5.4 and its
{32{
manuscript submitted to JGR
1318 applications. Geosci. Model Dev., 11 , 1929{1969.
1319 Lancz, D., Szinta, B., & Honnert, R. (2017). Modi�cation of shallow convection
1320 parametrization in the gray zone in a mesoscale model. Boundary-Layer Mete-
1321 orol..
1322 Lappen, C.-L., & Randall, D. A. (2001). Toward a uni�ed parameteriza1323
tion of the boundary layer and moist convection. Part I: A new type of
1324 mass-
ux model. J. Atmos. Sci., 58 (15), 2021-2036. Retrieved from
1325 https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
1326 doi: 10.1175/1520-0469(2001)058h2021:TAUPOTi2.0.CO;2
1327 Lazeroms, W. M. J., Svensson, G., Bazile, E., Brethouwer, G., Wallin, S., & Jo1328
hansson, A. V. (2016, Oct 01). Study of transitions in the atmospheric
1329 boundary layer using explicit algebraic turbulence models. Boundary-Layer
1330 Meteorol., 161 (1), 19{47. Retrieved from https://doi.org/10.1007/
1331 s10546-016-0194-1 doi: 10.1007/s10546-016-0194-1
1332 Lean, H. W., Clark, P. A., Dixon, M., Roberts, N. M., Fitch, A., Forbes, R., & Hal1333
liwell, C. (2008). Characteristics of high-resolution versions of the Met O�ce
1334 Uni�ed Model for forecasting convection over the United Kingdom. Mon. Wea.
1335 Rev., 136 (9), 3408-3424.
1336 LeMone, M. A., Chen, F., Tewari, M., Dudhia, J., Geerts, B., Miao, Q., . . . Gross1337
man, R. L. (2010). Simulating the IHOP 2002 fair-weather CBL with the
1338 WRF-ARW-Noah modeling system. Part II: Structures from a few kilome1339
ters to 100 km across. Mon. Wea. Rev., 138 (3), 745-764. Retrieved from
1340 https://doi.org/10.1175/2009MWR3004.1 doi: 10.1175/2009MWR3004.1
1341 Leoncini, G., Plant, R. S., Gray, S. L., & Clark, P. A. (2010). Perturbation growth
1342 at the convective scale for CSIP IOP18. Q. J. R. Meteorol. Soc., 136 , 653-670.
1343 Leroyer, S., Blair, S., Mailhot, J., & Strachan, I. B. (2011). Microscale nu1344
merical prediction over Montreal with the Canadian external urban mod1345
eling system. J. Appl. Meteorol. Climatol., 50 (12), 2410-2428. doi:
1346 10.1175/JAMC-D-11-013.1
1347 Lilly, D. K. (1967). The representation of small-scale turbulence in numerical sim1348
ulation experiments. Proc. IBM Scienti�c Computing Symp. on Environmental
1349 Sciences, 195.
1350 Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000).
1351 A new boundary layer mixing scheme. Part I : Scheme description and
1352 single-column model tests. Mon. Wea. Rev., 128 (9), 3187-3199. doi:
1353 10.1175/1520-0493(2000)128h3187:ANBLMSi2.0.CO;2
1354 Malavelle, F. F., Haywood, J. M., Field, P. R., Hill, A. A., Abel, S. J., Lock, A. P.,
1355 . . . McBeath, K. (2014). A method to represent subgrid-scale updraft velocity
1356 in kilometer-scale models: Implication for aerosol activation. J. Geophys. Res.
1357 Atmos., 119 (7), 4149{4173. doi: 10.1002/2013JD021218
1358 Martinet, M., Nuissier, O., Du�ourg, F., Ducrocq, V., & Ricard, D. (2017). Fine1359
scale numerical analysis of the sensitivity of the HyMeX IOP16a heavy pre1360
cipitating event to the turbulent mixing-length parametrization. Q. J. R.
1361 Meteorol. Soc., 143 , 31223135. doi: 10.1002/qj.3167
1362 Mason, P. J., & Brown, A. R. (1999). On subgrid models and �lter operations in
1363 large eddy simulations. J. Atmos Sci., 56 , 21012104.
1364 Mason, P. J., & Thomson, D. J. (1992). Stochastic backscatter in large-eddy simula1365
tions of boundary layers. J. Fluid Mech., 242 , 5178.
1366 Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for
1367 geophysical
uid problems. Rev. Geophys., 20 (4), 851{875.
1368 Mirocha, J., Kirkil, G., Bou-Zeid, E., Chow, F. K., & Kosovic, B. (2013). Transition
1369 and equilibration of neutral atmospheric boundary layer
ow in one-way nested
1370 large-eddy simulations using the weather research and forecasting model. Mon.
1371 Wea. Rev., 141 , 918-940.
1372 Mun~oz-Esparza, D., Kosovi�c, B., Mirocha, J., & van Beeck, J. (2014, Dec 01).
{33{
manuscript submitted to JGR
1373 Bridging the transition from mesoscale to microscale turbulence in numerical
1374 weather prediction models. Boundary-Layer Meteorol., 153 (3), 409{440. doi:
1375 10.1007/s10546-014-9956-9
1376 Nakanishi, M., & Nino, H. (2009). Development of an improved turbulence closure
1377 model for the atmospheric boundary layer. J. Meteorol. Soc. Japan, 87 (5),
1378 895-912. doi: 10.2151/jmsj.87.895
1379 Neggers, R. A. J., Griewank, P. J., & Heus, T. (2019). Power-law scaling in
1380 the internal variability of cumulus cloud size distributions due to subsam1381
pling and spatial organization. J. Atmos. Sci., 76 (6), 1489-1503. doi:
1382 10.1175/JAS-D-18-0194.1
1383 Neggers, R. A. J., Koehler, M., & Beljaars, A. A. M. (2009). A dual mass
ux
1384 framework for boundary-layer convection. Part I: Transport. J. Atmos. Sci.,
1385 66 , 1465-1487. doi: 10.1175/2008JAS2635.1
1386 Neggers, R. A. J., Siebesma, A. P., & Jonker, H. J. J. (2002). A multiparcel model
1387 for shallow cumulus convection. J. Atmos. Sci., 59 , 1655-1668.
1388 O'Neill, J. J., Cai, X.-M., & Kinnersley, R. (2015). A generalised stochastic
1389 backscatter model: large-eddy simulation of the neutral surface layer. Q. J.
1390 R. Meteorol. Soc., 141 , 2617-2629.
1391 Orlanski, I. (1975). A rational subdivison of scales for atmospheric processes. Bull.
1392 Amer. Meteorol. Soc., 56 , 527-530.
1393 Palmer, T. (2001). A nonlinear dynamical perspective on model error: A pro1394
posal for non-local stochastic-dynamic parametrization in weather and climate
1395 prediction models. Q. J. R. Meteorol. Soc., 127 , 279-304.
1396 Palmer, T. (2012). Towards the probabilistic Earth-system simulator: A vision
1397 for the future of climate and weather prediction. Q. J. R. Meteorol. Soc., 138 ,
1398 841-861.
1399 Park, S. (2014). A Uni�ed Convection Scheme (UNICON). Part I: Formulation. J.
1400 Atmos. Sci., 71 , 3902-3930. doi: 10.1175/JAS-D-13-0233.1
1401 Pergaud, J., Masson, V., Malardel, S., & Couvreux, F. (2009). A parametrisation of
1402 dry thermals and shallow cumuli for mesoscale numerical weather prediction.
1403 Boundary-Layer Meteorol., 132 , 83-106.
1404 Petch, J. C., Brown, A. R., & Gray, M. E. B. (2002). The impact of horizontal reso1405
lution on the simulations of convective development over land. Q. J. R. Meteo-
1406 rol. Soc., 128 , 2031-2044,doi:10.1256/003590002320603511.
1407 Plant, R. S., Bengtsson, L., & Whitall, M. A. (2015). Stochastic aspects of convec1408
tive parameterization. In R. S. Plant & J.-I. Yano (Eds.), Parameterization
1409 of atmospheric convection. Volume 2: Current issues and new theories (pp.
1410 135{172). World Scienti�c, Imperial College Press.
1411 Plant, R. S., & Craig, G. C. (2008). A Stochastic Parameterization for Deep Convec1412
tion Based on Equilibrium Statistics. J. Atmos. Sci., 65 , 87-105. doi: 10.1175/
1413 2007JAS2263.1
1414 Ramachandran, S., Tandon, A., & Mahadevan, A. (2013). E�ect of subgrid-scale
1415 mixing on the evolution of forced submesoscale instabilities. Ocean Modelling,
1416 66 , 45-63.
1417 Ramachandran, S., & Wyngaard, J. (2011). Sub�lter-scale modelling using transport
1418 equations: Large-eddy simulation of the moderately convective atmospheric
1419 boundary layer. Boundary-Layer Meteorol , 139 , 1-35.
1420 Raynaud, L., & Bouttier, F. (2017). The impact of horizontal resolution and en1421
semble size for convective-scale probabilistic forecasts. Q. J. R. Meteorol. Soc.,
1422 143 , 3037-3047.
1423 Redelsperger, J. L., Thorncroft, C. D., A. Diedhiou, T. L., Parker, D. J., & Polcher,
1424 J. (2006). African monsoon multidisciplinary analysis an international research
1425 project and �eld campaign. Bull. Amer. Meteorol. Soc., 87 (12), 1735-1746.
1426 Ricard, D., Lac, C., Legrand, R., Mary, A., & Riette, S. (2013). Kinetic energy spec1427
tra characteristics of two convection-permitting limited-area models AROME
{34{
manuscript submitted to JGR
1428 and MesoNH. Q. J. R. Meteorol. Soc., 139 , 1327-1341.
1429 Rio, C., Hourdin, F., Couvreux, F., & Jam, A. (2010). Resolved versus parametrized
1430 boundary-layer plumes. Part II : Continuous formulations of mixing rates for
1431 mass-
ux schemes. Boundary-Layer Meteorol , 135 , 469-483.
1432 Roberts, N. M., & Lean, H. W. (2008). Scale-selective veri�cation of rainfall accu1433
mulations from high-resolution forecasts of convective events. Mon. Wea. Rev.,
1434 136 (1), 78-97. doi: 10.1175/2007MWR2123.1
1435 Sakradzija, M., Seifert, A., & Dipankar, A. (2016). A stochastic scale-aware param1436
eterization of shallow cumulus convection across the convective gray zone. J.
1437 Adv. Model. Earth Syst., 8 (2), 786{812. Retrieved from http://dx.doi.org/
1438 10.1002/2016MS000634 doi: 10.1002/2016MS000634
1439 Sakradzija, M., Seifert, A., & Heus, T. (2014). Fluctuations in a quasi-stationary
1440 shallow cumulus cloud ensemble. Nonlin. Processes Geophys. Discuss., 1 , 1223-
1441 1282. doi: 10.5194/npgd-1-1223-2014
1442 Seity, Y., Brousseau, P., Malardelle, S., Hello, G., Bouttier, F., Lac, C., & Masson,
1443 V. (2011). The AROME-France convective scale operational model. Mon.
1444 Wea. Rev., 139 , 976-991.
1445 Shin, H. H., & Dudhia, J. (2016). Evaluation of PBL parameterizations
1446 in WRF at subkilometer grid spacings: Turbulence statistics in the dry
1447 convective boundary layer. Mon. Wea. Rev., 144 (3), 1161-1177. doi:
1448 10.1175/MWR-D-15-0208.1
1449 Shin, H. H., & Hong, S. (2013). Analysis on resolved and parameterized vertical
1450 transports in the convective boundary layers at the gray-zone resolution. J. At-
1451 mos. Sci., 70 , 3248-3261.
1452 Shin, H. H., & Hong, S. (2015). Representation of the subgrid-scale turbulent trans1453
port in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev.,
1454 143 , 250-271.
1455 Siebesma, A. P., & Cuijpers, J. W. M. (1995). Evaluation of parametric assumptions
1456 for shallow cumulus convection. J. Atmos. Sci., 52 (6), 650{666.
1457 Siebesma, A. P., Soares, P. M. M., & Teixeira, J. (2007). A combined eddy1458
di�usivity mass-
ux approach for the convective boundary layer. J. Atmos.
1459 Sci., 64 , 1230-1248.
1460 Siebesma, P., JAKOB, C., LENDERINK, G., NEGGERS, R. A. J., TEIXEIRA,
1461 J., van MEIJGAARD, E., . . . SEVERIJNS, C. (2004). Cloud representation
1462 in general-circulation models over the northern Paci�c ocean: A EUROCS
1463 intercomparison study. Q. J. R. Meteorol. Soc., 130 , 3245-3267.
1464 Simon, J. S., Zhou, B., Mirocha, J. D., & Chow, F. K. (2019). Explicit �lter1465
ing and reconstruction to reduce grid dependence in convective boundary
1466 layer simulations using WRF-LES. Mon. Wea. Rev., 147 , 1805{1821. doi:
1467 10.1175/MWR-D-18-0205.1
1468 Skamarock, W. C. (2004). Evaluating mesoscale NWP models using kinetic energy
1469 spectra. Mon. Wea. Rev., 132 , 3019-3032.
1470 Smagorinsky, J. J. (1967). General circulation experiments with the primitive equa1471
tions. Mon. Wea. Rev., 91 (3), 99-164. doi: 10.1175/1520-0493(1963)091h0099:
1472 GCEWTPi2.3.CO;2
1473 Stein, T. H. M., Hogan, R. J., Clark, P. A., Halliwell, C. E., Hanley, K. E., Lean,
1474 H. W., . . . Plant, R. S. (2015). The DYMECS project: A statistical approach
1475 for the evaluation of convective storms in high-resolution NWP models. Bull.
1476 Amer. Meteorol. Soc., 96 , 939-951.
1477 Stirling, A. J., & Petch, J. C. (2004). The impacts of spatial variability on the devel1478
opment of convection. Q. J. R. Meteorol. Soc., 130 , 3189-3206.
1479 Stoelinga, M. T. (1996). A potential vorticity-based study on the role of diabatic
1480 heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea.
1481 Rev., 124 , 849-874.
1482 Stull, R. B. (1984). Transilient turbulence theory. Part I : The concept of eddy-
{35{
manuscript submitted to JGR
1483 mixing across �nite distances. J. Atmos. Sci., 41 , 3351-3366.
1484 Stull, R. B. (1988). An introduction to boundary layer meteorology. Kluwer Acaemic
1485 Publishers.
1486 Sullivan, P. P., Horst, T. W., Lenschow, D. H., Moeng, C.-H., & Weil, J. C. (2003).
1487 Structure of sub�lter-scale
uxes in the atmospheric surface layer with applica1488
tion to large-eddy simulation modelling. J. Fluid Mech, 482 , 101{139.
1489 Sullivan, P. P., McWilliams, J. C., & Moeng, C.-H. (1996). A grid nesting method
1490 for large-eddy simulation of planetary boundary-layer
ows. Boundary-Layer
1491 Meteorol., 80 (1-2), 167-202.
1492 Sullivan, P. P., & Patton, E. G. (2011). The e�ect of mesh resolution on convective
1493 boundary layer statistics and structures generated by large-eddy simulation. J.
1494 Atmos. Sci., 68 (10), 2395-2415. doi: 10.1175/JAS-D-10-05010.1
1495 Suselj, K., Hogan, T. F., & Teixeira, J. (2014). Implementation of a stochas1496
tic eddy-di�usivity/mass-
ux parameterization into the Navy Global
1497 Environmental Model. Weath. and Forecasting, 29 , 1374-1390. doi:
1498 10.1175/WAF-D-14-00043.1
1499 Tan, Z., Kaul, C. M., Pressel, K. G., Cohen, Y., Schneider, T., & Teixeira, J. (2018).
1500 An extended eddy-di�usivity mass-
ux scheme for uni�ed representation of
1501 subgrid-scale turbulence and convection. J. Adv. Model. Earth Syst., 10 ,
1502 770-800.
1503 Teixeira, J., & Cheinet, S. (2004). A simple mixing length formulation for the
1504 eddy-di�usivity parameterization of dry convection. Boundary-Layer Meteorol.,
1505 110 (3), 435{453.
1506 Lafore, J., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., . . . Vila-
1507 Guerau de Arellano, J. (1998). The M�eso-NH atmospheric simulation system.
1508 Part I : Adiabatic formulation and control simulation. Annales Geophysics,
1509 16 , 90-109.
1510 Thuburn, J., Weller, H., Vallis, G. K., Beare, R. J., & Whitall, M. (2018). A
1511 framework for convection and boundary layer parameterization derived from
1512 conditional �ltering. J. Atmos. Sci., 75 (3), 965-981. Retrieved from https://
1513 doi.org/10.1175/JAS-D-17-0130.1 doi: 10.1175/JAS-D-17-0130.1
1514 Tomassini, L., Field, P. R., Honnert, R., Malardel, S., McTaggart-Cowan, R., Saitou,
1515 K., . . . Seifert, A. (2016). The grey zone cold air outbreak global model inter1516
comparison : A cross evaluation using large-eddy simulations. J. Adv. Model.
1517 Earth Syst., 9 , 39-64, doi:10.1002/2016MS000822.
1518 Tomassini, L., Parker, D. J., Stirling, A., Bain, C., Senior, C., & Milton, S. (2017).
1519 The interaction between moist diabatic processes and the atmospheric circula1520
tion in African Easterly Wave propagation. Q. J. R. Meteorol. Soc..
1521 Verrelle, A., Ricard, D., & Lac, C. (2015). Sensitivity of high-resolution ideal1522
ized simulations of thunderstorms to horizontal resolution and turbulence
1523 parametrization. Q. J. R. Meteorol. Soc., 141 , 433{448.
1524 Verrelle, A., Ricard, D., & Lac, C. (2017). Evaluation and improvement of turbu1525
lence parameterization inside deep convective clouds at kilometer-scale resolu1526
tion. Mon. Wea. Rev., 145 (10), 3947-3967. doi: 10.1175/MWR-D-16-0404.1
1527 Wagner, J. S., Gohm, A., & Rotach, M. W. (2014). The impact of horizontal model
1528 grid resolution on the boundary layer structure over an idealized valley. Mon.
1529 Wea. Rev., 142 (9), 3446-3465.
1530 Wagner, T. M., & Graf, H.-F. (2010). An ensemble cumulus convection parameter1531
ization with explicit cloud treatment. J. Atmos. Sci., 67 , 3854-3869. doi: 10
1532 .1175/2010JAS3485.1
1533 Warren, R. A., Kirshbaum, D. J., Plant, R. S., & Lean, H. W. (2014). A Boscastle1534
type quasi-stationary convective system over the UK southwest peninsula. Q.
1535 J. R. Meteorol. Soc., 140 (678), 240-257.
1536 Weckwerth, T. M., Parsons, D. B., Koch, S. E., Moore, J. A., LeMone, M. A., De1537
moz, B. B., . . . Feltz, W. F. (2004). An overview of the International H2O
{36{
manuscript submitted to JGR
1538 Project (IHOP 2002) and some preliminary highlights. Bull. Amer. Meteor.
1539 Soc., 85 (2), 253-278. doi: 10.1175/BAMS-85-2-253
1540 Weinbrecht, S., & Mason, P. J. (2008). Stochastic backscatter for cloud-resolving
1541 models. Part I: Implementation and testing in a dry convective boundary layer.
1542 J. Atmos. Sci., 65 , 123-139.
1543 Wyngaard, J. C. (2004). Toward numerical modelling in the 'Terra Incognita'. J.
1544 Atmos. Sci., 61 , 1816-1826.
1545 Xie, Z.-T., & Castro, I. P. (2008). E�cient generation of in
ow conditions for large
1546 eddy simulation of street-scale
ows. Flow Turbulence Combust., 81 , 449-470.
1547 Young, G. S., Kristovich, D. A. R., Hjelmfelt, M. R., & Foster, R. C. (2002). Rolls,
1548 streets, waves, and more: A review of quasi-two-dimensional structures in the
1549 atmospheric boundary layer. Bull. Amer. Meteorol. Soc., 83 (7), 997{1002.
1550 Zhang, X., Bao, J.-W., Chen, B., & Grell, E. D. (2018). A three-dimensional scale1551
adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon.
1552 Wea. Rev., 146 (7), 2023-2045. doi: 10.1175/MWR-D-17-0356.1
1553 Zhou, B., Simon, J. S., & Chow, F. K. (2014). The convective boundary layer in the
1554 terra incognita. J. Atmos. Sci., 71 (7), 2545-2563. doi: 10.1175/JAS-D-13-0356
1555 .1
1556 Zhou, B., Xue, M., & Zhu, K. (2017). A grid-re�nement-based approach for mod1557
eling the convective boundary layer in the gray zone: A pilot study. J. Atmos.
1558 Sci., 74 (11), 3497-3513. doi: 10.1175/JAS-D-16-0376.1
1559 Zhou, B., Xue, M., & Zhu, K. (2018). A grid-re�nement-based approach for model1560
ing the convective boundary layer in the gray zone: Algorithm implementation
1561 and testing. J. Atmos. Sci., 75 (4), 1143-1161. doi: 10.1175/JAS-D-17-0346.1
{37{ University Staff: Request a correction | Centaur Editors: Update this record |