Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projectionsGoelzer, H., Noël, B. P. Y., Edwards, T. L., Fettweis, X., Gregory, J. M. ORCID: https://orcid.org/0000-0003-1296-8644, Lipscomb, W. H., van de Wal, R. S. W. and van den Broeke, M. R. (2020) Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. The Cryosphere, 14 (6). pp. 1747-1762. ISSN 1994-0424
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.5194/tc-14-1747-2020 Abstract/SummaryFuture sea-level change projections with process-based stand-alone ice sheet models are typically driven with surface mass balance (SMB) forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the geometry used by the climate model. We present a method for applying SMB forcing from climate models to a wide range of Greenland ice sheet models with varying and temporally evolving geometries. In order to achieve that, we translate a given SMB anomaly field as a function of absolute location to a function of surface elevation for 25 regional drainage basins, which can then be applied to different modelled ice sheet geometries. The key feature of the approach is the non-locality of this remapping process. The method reproduces the original forcing data closely when remapped to the original geometry. When remapped to different modelled geometries it produces a physically meaningful forcing with smooth and continuous SMB anomalies across basin divides. The method considerably reduces non-physical biases that would arise by applying the SMB anomaly derived for the climate model geometry directly to a large range of modelled ice sheet model geometries.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |