(1) Sharpless, K. B. Searching for New Reactivity (Nobel Lecture). Angew. Chemie Int. Ed. 2002, 41 (12), 2024–2032.
(2) Fukawa, H.; Izumi, Y.; Komatsu, S.; Akabori, S. Studies on Modified Hydrogenation Catalyst. I. Selective Hydrogenation Activity of Modified Raney Nickel Catalyst for Carbonyl Group and C=C Double Bond. Bull. Chem. Soc. Jpn. 1962, 35 (10), 1703–1706.
(3) Izumi, Y. Modified Raney Nickel (MRNi) Catalyst: Heterogeneous Enantio-Differentiating (Asymmetric) Catalyst. Adv. Catal. 1983, 32, 215–271.
(4) Baddeley, C. J.; Jones, T. E.; Trant, A. G.; Wilson, K. E. Fundamental Investigations of Enantioselective Heterogeneous Catalysis. Top. Catal. 2011, 54 (19–20), 1348–1356.
(5) Baddeley, C. J.; Held, G. Chiral Molecules on Surfaces. In Comprehensive Nanoscience and Technology; Elsevier Inc., 2011; Vol. 1–5, pp 105–133.
(6) Keane, M. A. Adsorption of Optically Pure Alanine on Silica-Supported Nickel and the Consequent Catalytic Enantioselectivity. Langmuir 1994, 10 (12), 4560–4565.
(7) Keane, M. A. Interaction of Optically Active Tartaric Acid with a Nickel−Silica Catalyst: Role of Both the Modification and Reaction Media in Determining Enantioselectivity. Langmuir 1997, 13 (1), 41–50.
(8) Jones, T. E.; Rekatas, A. E.; Baddeley, C. J. Influence of Modification PH and Temperature on the Interaction of Methylacetoacetate with (S)-Glutamic Acid-Modified Ni{111}. J. Phys. Chem. C 2007, 111 (14), 5500–5505.
(9) Wilson, K. E.; Baddeley, C. J. Understanding the Surface Chemistry of Enantioselective Heterogeneous Reactions: Influence of Modification Variables on the Interaction of Methylacetoacetate with (S)-Aspartic Acid Modified Ni{111}. J. Phys. Chem. C 2009, 113 (24), 10706–10711.
(10) Jones, T. E.; Baddeley, C. J. A RAIRS, STM and TPD Study of the Ni{111}/R,R-Tartaric Acid System: Modelling the Chiral Modification of Ni Nanoparticles. Surf. Sci. 2002, 513 (3), 453–467.
(11) Jones, T. E.; Baddeley, C. J. An Investigation of the Adsorption of (R,R)-Tartaric Acid on Oxidised Ni{111} Surfaces. J. Mol. Catal. A Chem. 2004, 216 (2), 223–231.
(12) Humblot, V.; Haq, S.; Muryn, C.; Hofer, W. A.; Raval, R. From Local Adsorption Stresses to Chiral Surfaces: (R,R)-Tartaric Acid on Ni(110). J. Am. Chem. Soc. 2002, 124 (3), 503–510.
(13) Humblot, V.; Haq, S.; Muryn, C.; Raval, R. (R,R)-Tartaric Acid on Ni(110): The Dynamic Nature of Chiral Adsorption Motifs. J. Catal. 2004, 228 (1), 130–140.
(14) Jones, T. E.; Urquhart, M. E.; Baddeley, C. J. An Investigation of the Influence of Temperature on the Adsorption of the Chiral Modifier, (S)-Glutamic Acid, on Ni{111}. Surf. Sci. 2005, 587 (1), 69–77.
(15) Nicklin, R. E. J.; Cornish, A.; Shavorskiy, A.; Baldanza, S.; Schulte, K.; Liu, Z.; Bennett, R. A.; Held, G. Surface Chemistry of Alanine on Ni{111}. J. Phys. Chem. C 2015, 119 (47), 26566–26574.
(16) Nicklin, R. E. J.; Shavorskiy, A.; Aksoy Akgul, F.; Liu, Z.; Bennett, R. A.; Sacchi, M.; Held, G. “Pop-On and Pop-Off” Surface Chemistry of Alanine on Ni{111} under Elevated Hydrogen Pressures. J. Phys. Chem. C 2018, 122 (14), 7720–7730.
(17) Ontaneda, J.; Nicklin, R. E. J.; Cornish, A.; Roldan, A.; Grau-Crespo, R.; Held, G. Adsorption of Methyl Acetoacetate at Ni{111}: Experiment and Theory. J. Phys. Chem. C 2016, 120 (48), 27490–27499.
(18) Tsaousis, P.; Ontaneda, J.; Bignardi, L.; Bennett, R. A.; Grau-Crespo, R.; Held, G. Combined Experimental and Theoretical Study of Methyl Acetoacetate Adsorption on Ni{100}. J. Phys. Chem. C 2018, 122 (11), 6186–6194.
(19) Jones, T. E.; Baddeley, C. J. Direct STM Evidence of a Surface Interaction between Chiral Modifier and Pro-Chiral Reagent: Methylacetoacetate on R,R-Tartaric Acid Modified Ni{111}. Surf. Sci. 2002, 519 (3), 237–249.
(20) Jones, T. E.; Baddeley, C. J. Investigating the Mechanism of Chiral Surface Reactions: The Interaction of Methylacetoacetate with (S)-Glutamic Acid Modified Ni{111}. Langmuir 2006, 22 (1), 148–152.
(21) Wilson, K. E.; Trant, A. G.; Baddeley, C. J. Interaction of the Pro-Chiral Molecule, Methylacetoacetate, with (S)-Aspartic Acid Modified Ni{111}. J. Phys. Chem. C 2012, 116 (1), 1092–1098.
(22) Jones, G.; Jenkins, S. J.; King, D. A. Hydrogen Bonds at Metal Surfaces: Universal Scaling and Quantification of Substrate Effects. Surf. Sci. 2006, 600 (17), 224–228.
(23) Zheleva, Z. V.; Eralp, T.; Held, G. Complete Experimental Structure Determination of the p(3 × 2)Pg Phase of Glycine on Cu{110}. J. Phys. Chem. C 2012, 116 (1), 618–625.
(24) Burkholder, L.; Chamberlin, S. E.; Kraffczyk, H.; Michels, M.; Boscoboinik, A.; Adams, H.; Hopper, N.; Held, G.; Hirschmugl, C.; Tysoe, W. T. The Structure of Alanine Anionic-Zwitterionic Dimers on Pd(111); Formation of Salt Bridges. Surf. Sci. 2019, 679, 79–85.
(25) Efstathiou, V.; Woodruff, D. P. Characterisation of the Interaction of Glycine with Cu(1 0 0) and Cu(1 1 1). Surf. Sci. 2003, 531 (3), 304–318.
(26) Sayago, D. I.; Polcik, M.; Nisbet, G.; Lamont, C. L. A.; Woodruff, D. P. Local Structure Determination of a Chiral Adsorbate: Alanine on Cu(1 1 0). Surf. Sci. 2005, 590 (1), 76–87.
(27) Kang, J. H.; Toomes, R. L.; Polcik, M.; Kittel, M.; Hoeft, J. T.; Efstathiou, V.; Woodruff, D. P.; Bradshaw, A. M. Structural Investigation of Glycine on Cu(100) and Comparison to Glycine on Cu(110). J. Chem. Phys. 2003, 118 (13), 6059–6071.
(28) Hasselström, J.; Karis, O.; Weinelt, M.; Wassdahl, N.; Nilsson, A.; Nyberg, M.; Pettersson, L. G. M.; Samant, M. G.; Stöhr, J. The Adsorption Structure of Glycine Adsorbed on Cu (110); Comparison with Formate and Acetate/Cu(110). Surf. Sci. 1998, 407 (1–3), 221–236.
(29) Rankin, R. B.; Sholl, D. S. Assessment of Heterochiral and Homochiral Glycine Adlayers on Cu(1 1 0) Using Density Functional Theory. Surf. Sci. 2004, 548 (1–3), 301–308.
(30) Rankin, R. B.; Sholl, D. S. Structure of Enantiopure and Racemic Alanine Adlayers on Cu(1 1 0). Surf. Sci. 2005, 574 (1), L1–L8.
(31) Rankin, R. B.; Sholl, D. S. Structures of Glycine, Enantiopure Alanine, and Racemic Alanine Adlayers on Cu(110) and Cu(100) Surfaces. J. Phys. Chem. B 2005, 109 (35), 16764–16773.
(32) Mahapatra, M.; Burkholder, L.; Bai, Y.; Garvey, M.; Boscoboinik, J. A.; Hirschmugl, C.; Tysoe, W. T. Formation of Chiral Self-Assembled Structures of Amino Acids on Transition-Metal Surfaces: Alanine on Pd(111). J. Phys. Chem. C 2014, 118 (13), 6856–6865.
(33) Baldanza, S.; Cornish, A.; Nicklin, R. E. J.; Zheleva, Z. V.; Held, G. Surface Chemistry of Alanine on Cu{111}: Adsorption Geometry and Temperature Dependence. Surf. Sci. 2014, 629, 114–122.
(34) Shavorskiy, A.; Eralp, T.; Schulte, K.; Bluhm, H.; Held, G. Surface Chemistry of Glycine on Pt{111} in Different Aqueous Environments. Surf. Sci. 2013, 607, 10–19.
(35) Eralp, T.; Ievins, A.; Shavorskiy, A.; Jenkins, S. J.; Held, G. The Importance of Attractive Three-Point Interaction in Enantioselective Surface Chemistry: Stereospecific Adsorption of Serine on the Intrinsically Chiral Cu{531} Surface. J. Am. Chem. Soc. 2012, 134 (23), 9615–9621.
(36) Eralp, T.; Shavorskiy, A.; Held, G. The Adsorption Geometry and Chemical State of Lysine on Cu{110}. Surf. Sci. 2011, 605 (3), 468–472.
(37) Eralp, T.; Shavorskiy, A.; Zheleva, Z. V.; Held, G.; Kalashnyk, N.; Ning, Y.; Linderoth, T. R. Global and Local Expression of Chirality in Serine on the Cu{110} Surface. Langmuir 2010, 26 (24), 18841–18851.
(38) Thomsen, L.; Wharmby, M. T.; Riley, D. P.; Held, G.; Gladys, M. J. The Adsorption and Stability of Sulfur Containing Amino Acids on Cu{5 3 1}. Surf. Sci. 2009, 603 (9), 1253–1261.
(39) Jones, G.; Jones, L. B.; Thibault-Starzyk, F.; Seddon, E. A.; Raval, R.; Jenkins, S. J.; Held, G. The Local Adsorption Geometry and Electronic Structure of Alanine on Cu{110}. Surf. Sci. 2006, 600 (9), 1924–1935.
(40) Karagoz, B.; Reinicker, A.; Gellman, A. J. Kinetics and Mechanism of Aspartic Acid Adsorption and Its Explosive Decomposition on Cu(100). Langmuir 2019, 35 (8), 2925–2933.
(41) Stöhr, J.; Jaeger, R. Absorption-Edge Resonances, Core-Hole Screening, and Orientation of Chemisorbed Molecules: CO, NO, and N2 on Ni(100). Phys. Rev. B 1982, 26 (8), 4111–4131.
(42) Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin, 1996.
(43) Mohsenzadeh, A.; Bolton, K.; Richards, T. DFT Study of the Adsorption and Dissociation of Water on Ni(111), Ni(110) and Ni(100) Surfaces. Surf. Sci. 2014, 627, 1–10.
(44) Mohsenzadeh, A.; Richards, T.; Bolton, K. DFT Study of the Water Gas Shift Reaction on Ni(111), Ni(100) and Ni(110) Surfaces. Surf. Sci. 2016, 644, 53–63.
(45) Wang, S. G.; Cao, D. B.; Li, Y. W.; Wang, J.; Jiao, H. Chemisorption of CO2 on Nickel Surfaces. J. Phys. Chem. B 2005, 109 (40), 18956–18963.
(46) O’Rourke, C.; Bowler, D. R. DSSC Anchoring Groups: A Surface Dependent Decision. J. Phys. Condens. Matter 2014, 26 (19), 44.
(47) Tillotson, M. J.; Brett, P.; Bennett, R. A.; Grau-Crespo, R. Adsorption of Organic Molecules at the TiO2(110) Surface: The Effect of van Der Waals Interactions. Surf. Sci. 2015, 632, 142–153.
(48) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50.
(49) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11186.
(50) Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Simple.” Phys. Rev. Lett. 1998, 80 (4), 890–890.
(51) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.
(52) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.
(53) Goerigk, L.; Grimme, S. A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2011, 13 (14), 6670–6688.
(54) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19 (48), 32184–32215.
(55) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868.
(56) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979.
(57) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775.
(58) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192.
(59) Makov, G.; Payne, M. Periodic Boundary Conditions in Ab Initio Calculations. Phys. Rev. B 1995, 51 (7), 4014–4022.
(60) Birgersson, M.; Almbladh, C.-O.; Borg, M.; Andersen, J. Density-Functional Theory Applied to Rh(111) and CO/Rh(111) Systems: Geometries, Energies, and Chemical Shifts. Phys. Rev. B 2003, 67 (4), 045402.
(61) Köhler, L.; Kresse, G. Density Functional Study of CO on Rh(111). Phys. Rev. B 2004, 70 (16), 165405.
(62) Gotterbarm, K.; Luckas, N.; Höfert, O.; Lorenz, M. P. A.; Streber, R.; Papp, C.; Viñes, F.; Steinrück, H. P.; Görling, A. Kinetics of the Sulfur Oxidation on Palladium: A Combined in Situ x-Ray Photoelectron Spectroscopy and Density-Functional Study. J. Chem. Phys. 2012, 136 (9), 094702.
(63) Ontaneda, J.; Bennett, R. A.; Grau-Crespo, R. Electronic Structure of Pd Multilayers on Re(0001): The Role of Charge Transfer. J. Phys. Chem. C 2015, 119 (41), 23436–23444.
(64) Kahk, J. M.; Lischner, J. Core Electron Binding Energies of Adsorbates on Cu(111) from First-Principles Calculations. Phys. Chem. Chem. Phys. 2018, 20 (48), 30403–30411.
(65) Pueyo Bellafont, N.; Viñes, F.; Hieringer, W.; Illas, F. Predicting Core Level Binding Energies Shifts: Suitability of the Projector Augmented Wave Approach as Implemented in VASP. J. Comput. Chem. 2017, 38 (8), 518–522.
(66) Zdansky, E. O. F.; Nilsson, A.; Mårtensson, N. CO-Induced Reversible Surface to Bulk Transformation of Carbidic Carbon on Ni(100). Surf. Sci. 1994, 310 (1–3), L583–L588.
(67) Chen, M.; Lin, Z. Ab Initio Studies of Aspartic Acid Conformers in Gas Phase and in Solution. J. Chem. Phys. 2007, 127 (15), 154314.
(68) Grau-Crespo, R.; Smith, K. C.; Fisher, T. S.; De Leeuw, N. H.; Waghmare, U. V. Thermodynamics of Hydrogen Vacancies in MgH2 from First-Principles Calculations and Grand-Canonical Statistical Mechanics. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 80 (17), 174117.
(69) Fukai, Y. The Metal-Hydrogen System; Springer: Berlin, 2005; Vol. 21.