1. Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015,
594 525, 47–55.
595 2. Stull, R.B. An introduction to boundary layer meteorology. Dordrecht: Kluwer Academic Publishers 1988, p.
596 666.
597 3. Honnert, R.; Masson, V.; Couvreux, F. A diagnostic for evaluating the representation of turbulence in
598 atmospheric models at the kilometric scale. J. Atmos. Sci. 2011, 68, 3112–3131.
599 4. Hanley, K.E.; Plant, R.S.; Stein, T.H.M.; Hogan, R.J.; Lean, H.W.; Halliwell, C.; Clark, P.A. Mixing length
600 controls on high resolution simulations of convective storms. Quart. J. Roy. Meteorol. Soc. 2015, 141, 272–284.
601 5. Thurston, W.; Fawcett, R.J.B.; Tory, K.J.; Kepert, J.D. Simulating boundary-layer rolls with a numerical
602 weather prediction model. Quart. J. Roy. Meteorol. Soc. 2016, 142, 211–223.
603 6. Doubrawa, P.; Muñoz-Esparza, D. Simulating Real Atmospheric Boundary Layers at Gray-Zone
604 Resolutions: How Do Currently Available Turbulence Parameterizations Perform? Atmosphere 2020,
605 11, 345.
606 7. Wyngaard, J.C. Toward numerical modeling in the “terra incognita”. J. Atmos. Sci. 2004, 61, 1816–1826.
607 8. Honnert, R.; Efstathiou, G.A.; Beare, R.J.; Ito, J.; Lock, A.; Neggers, R.; Plant, R.S.; Shin, H.H.; Tomassini,
608 L.; Zhou, B. The Atmospheric Boundary Layer and the "Gray Zone" of Turbulence: A critical review. J.
609 Geophys. Res.: Atmospheres 2020, 125, 1–1.
610 9. Stoll, R.; Gibbs, J.A.; Salesky, S.T.; Anderson, W.; Calaf, M. Large-Eddy Simulation of the Atmospheric
611 Boundary Layer. Bound.-Layer Meteor. 2020, pp. doi.org/10.1007/s10546–020–00556–3.
612 10. Wurps, W.; Steinfeld, G.; Heinz, S. Grid-Resolution Requirements for Large-Eddy Simulations of the
613 Atmospheric Boundary Layer. Bound.-Layer Meteor. 2020, 175, 179–201.
614 11. Sullivan, P.P.; Patton, E.G. The effect of mesh resolution on convective boundary layer statistics and
615 structures generated by Large-Eddy Simulation. J. Atmos. Sci. 2011, 68, 2395–2415.
616 12. Beare, R.J. A length scale defining partially-resolved boundary-layer turbulence simulations. Bound.-Layer
617 Meteor. 2014, 151, 39–55.
618 13. Park, S.B.; Baik, J.J.; Han, B.S. Characteristics of Decaying Convective Boundary Layers Revealed by
619 Large-Eddy Simulations. Atmosphere 2020, 11, 1–16.
620 14. Matheou, G.; Chung, D. Large-Eddy Simulation of Stratified Turbulence. Part II: Application of the
621 Stretched-Vortex Model to the Atmospheric Boundary Layer. J. Atmos. Sci. 2014, 71, 4439–4460.
622 15. Matheou, G.; Chung, D.; Nuijens, L.; Stevens, B.; Teixeira, J. On the Fidelity of Large-Eddy Simulation of
623 Shallow Precipitating Cumulus Convection. Mon. Weather Rev. 2011, 139, 2918–2939.
624 16. Moeng, C.H.; Sullivan, S.S. A comparison of shear- and buoyancy-driven planetary boundary layer flows.
625 J. Atmos. Sci. 1994, 51, 999–1022.
626 17. Khanna, S.; Brasseur, J.G. Three-dimensional buoyancy- and shear-induced local structure of the
627 atmospheric boundary layer. J. Atmos. Sci. 1998, 55, 710–743.
628 18. Pino, D.; Vila-Guerau de Arellano, J.; Duynkerke, P.G. The contribution of shear to the evolution of a
629 convective boundary layer. J. Atmos. Sci. 2003, 60, 1913–1926.
630 19. Park, S.B.; Baik, J.J. Large-Eddy Simulations of convective boundary layers over flat and urbanlike surfaces.
631 J. Atmos. Sci. 2014, 71, 1880–1892.
632 20. Kaimal, J.C.; Wyngaard, J.C.; Haugen, D.A.; Coté, O.R.; Izumi, Y.; Caughey, S.J.; Readings, C.J. Turbulence
633 structure in the convective boundary layer. J. Atmos. Sci. 1976, 33, 2152–2169.
634 21. Caughey, S.J.; Palmer, S.G. Some aspects of turbulence structure through the depth of the convective
635 boundary layer. Quart. J. Roy. Meteorol. Soc. 1979, 105, 811–827.
Version September 10, 2020 submitted to Atmosphere 16 of 37
636 22. Moeng, C.H. A Large-Eddy-Simulation model for the study of planetary boundary-layer turbulence. J.
637 Atmos. Sci. 1984, 41, 2052–2062.
638 23. Garcia, J.R.; Mellado, J.P. The two-layer structure of the entrainment zone in the convective boundary layer.
639 J. Atmos. Sci. 2014, 71, 1935–1955.
640 24. Sullivan, P.P.; Moeng, C.H.; Stevens, B.; Lenschow, D.H.; Mayor, S.D. Structure of the entrainment zone
641 capping the convective atmospheric boundary layer. J. Atmos. Sci. 1998, 55, 3042–3064.
642 25. Catalano, F.; Moeng, C.H. Large-Eddy Simulation of the daytime boundary layer in an idealized valley
643 using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor. 2010, 137, 49–75.
644 26. Efstathiou, G.A.; Plant, R.S.; Bopape, M.J.M. Simulation of an Evolving Convective Boundary Layer Using
645 a Scale-Dependent Dynamic Smagorinsky Model at Near-Gray-Zone Resolutions. J. Appl. Meteorol. Clim.
646 2018, 57, 2197–2214.
647 27. Boutle, I.A.; Eyre, J.E.J.; Lock, A.P. Seamless Stratocumulus Simulation across Turbulent Gray Zone. Mon.
648 Weather Rev. 2014, 142, 1655–1668.
649 28. Shin, H.H.; Hong, S. Representation of the subgrid-scale turbulent transport in convective boundary layers
650 at gray-zone resolutions. Mon. Weather Rev. 2015, 142, 250–271.
651 29. Bou-Zeid, E.; Meneveau, C.; Parlange, M. A scale-dependent Lagrangian dynamic model for large eddy
652 simulation of complex turbulent flows. Phys. Fluids 2005, 17, 025105.
653 30. Efstathiou, G.; Beare, R.; Osborne, S.; Lock, A. Grey zone simulations of the morning convective boundary
654 layer development. J. Geophys. Res.: Atmospheres 2016, 121. doi:10.1002/2016JD024860.
655 31. Mason, P.J. Large-eddy simulation: A critical review of the technique. Quart. J. Roy. Meteorol. Soc. 1994,
656 120, 1–26.
657 32. Smagorinsky, J. General circulation experiments with the primitive equations. Mon. Weather. Rev. 1963,
658 91, 99–164.
659 33. Lilly, D.K. On the computational stability of numerical solutions of time-dependent non-linear geophysical
660 fluid dynamics problems. Mon. Weather. Rev. 1965, 93, 11–25.
661 34. Mason, P.J.; Thomson, D.J. Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid
662 Mech. 1992, 242, 51–78.
663 35. Weinbrecht, S.; Mason, P.J. Stochastic backscatter for cloud-resolving models. Part I: Implementation and
664 testing in a dry convective boundary layer. J. Atmos. Sci. 2008, 65, 123–139.
665 36. Germano, M.; Piomelli, U.; Moin, P.; Cabot,W.H. A dynamic subgrid-scale eddy viscosity model. Phys.
666 Fluids A. 1991, 3, 1760–1765.
667 37. Meneveau, C.; Katz, J. Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid
668 Mech. 2000, 32, 1–32.
669 38. Shutts, G.J.; Gray, M.E.B. A numerical modelling study of the geostrophic adjustment process following
670 deep convection. Quart. J. Roy. Meteorol. Soc. 1994, 120, 1145–1178.
671 39. Piacsek, S.A.;Williams, G.P. Conservation properties of convection difference schemes. J. Comput. Phys.
672 1970, 6, 392–405.
673 40. Brown, A.R.; Derbyshire, S.H.; Mason, P.J. Large-eddy simulation of stable atmospheric boundary layers
674 with a revised stochastic subgrid model. Quart. J. Roy. Meteorol. Soc. 1994, 120, 1485–1512.
675 41. Lilly, D.K. On the Application of the Eddy Viscosity Concept in the Inertial Sub-range of Turbulence.
676 Technical Report 123, National Centre for Atmospheric Research, Boulder, Colorado, 1966.
677 42. Matheou, G. Numerical discretization and subgrid-scale model effects on large-eddy simulations of a
678 stable boundary layer. Quart. J. Roy. Meteorol. Soc. 2016, 142, 3050–3062.
679 43. Coceal, O.; Dobre, A.; Thomas, T.G.; Belcher, S.E. Structure of turbulent flow over regular arrays of cubical
680 roughness. J. Fluid Mech. 2007, 598, 375–409.