Potential of stochastic methods for improving convection-permitting ensemble forecasts of extreme events over the western MediterraneanHermoso, A., Homar, V. and Plant, R. S. ORCID: https://orcid.org/0000-0001-8808-0022 (2021) Potential of stochastic methods for improving convection-permitting ensemble forecasts of extreme events over the western Mediterranean. Atmospheric Research, 257. 105571. ISSN 0169-8059
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.atmosres.2021.105571 Abstract/SummaryThe design of convection-permitting ensemble prediction systems capable of producing accurate forecasts of disruptive events is an extraordinarily challenging effort. The difficulties associated with the detection of extreme events found at these scales motivates the research of methodologies that efficiently sample relevant uncertainties. This study investigates the potential of multiple techniques to account for model uncertainty. The performance of various stochastic schemes is assessed for an exceptional heavy precipitation episode which occurred in eastern Spain. In particular, the stochastic strategies are compared to a multiphysics approach in terms of both spread and skill. The analyzed techniques include stochastic parameterization perturbation tendency and perturbations to influential parameters within the microphysics scheme. The introduction of stochastic perturbations to the microphysics processes results in a larger ensemble spread throughout the entire simulation. Conversely, modifications to microphysics parameters generate small-scale perturbations that rapidly grow over areas with high convective instability, in contrast to the other methods, which produce more widespread perturbations. A conclusion of specific interest for the western Mediterranean, where deep moist convection and local orography play an important role, is that stochastic methods are shown to outperform a multiphysics-based ensemble of this case, indicating the potential positive impact of stochastic parameterizations for the forecast of extreme events in the region.
DownloadsDownloads per month over past year
Amengual, A., Carri�o, D., Ravazzani, G., Homar, V., 2017. A comparison
of ensemble strategies for
ash
ood forecasting: The 12 october 2007 case
32
study in Valencia, Spain. J. Hydrometeor. 18, 1143{1166. doi:10.1175/
JHM-D-16-0281.1.
870 Bachmann, K., Keil, C., Craig, G., Weissmann, M., Welzbacher, C., 2020. Predictability
of deep convection in idealized and operational forecasts: E�ects
of radar data assimilation, orography, and synoptic weather regime. Mon.
Wea. Rev. 148, 63{81. doi:10.1175/MWR-D-19-0045.1.
Bachmann, K., Keil, C.,Weissmann, M., 2019. Impact of radar data assimilation
875 and orography on predictability of deep convection. Quart. J. Royal Meteor.
Soc. 145, 117{130. doi:10.1002/qj.3412.
Barthlott, C., Hoose, C., 2018. Aerosol e�ects on clouds and precipitation over
central Europe in di�erent weather regimes. J. Atmos. Sci. 75, 4247{4264.
doi:10.1175/JAS-D-18-0110.1.
880 Beck, J., Bouttier, F., Wiegand, L., Gebhardt, C., Eagle, C., Roberts, N.,
2016. Development and veri�cation of two convection-allowing multi-model
ensembles over Western Europe. Quart. J. Royal Meteor. Soc. 142, 2808{2826.
doi:10.1002/qj.2870.
Berner, J., Achatz, U., Batt�e, L., Bengtsson, L., De La C�amara, A., Christensen,
885 H., Colangeli, M., Coleman, D., Crommelin, D., Dolaptchiev, S., Franzke, C.,
Friederichs, P., Imkeller, P., J�arvinen, H., Juricke, S., Kitsios, V., Lott, F.,
Lucarini, V., Mahajaajaajan, S. Palmer, T., Penland, C., Sakradzijaja, M.,
Von Storch, J., Weisheimer, A., Weniger, M., Williams, P., Yano, J.I., 2017.
Stochastic parameterization toward a new view of weather and climate mod890
els. Bull. Amer. Meteor. Soc. 98, 565{587. doi:10.1175/BAMS-D-15-00268.1.
Berner, J., Fossell, K., Ha, S., Hacker, J.P., Snyder, C., 2015. Increasing
the skill of probabilistic forecasts: Understanding performance improvements
from model-error representations. Mon. Wea. Rev. 143, 1295{1320.
doi:10.1175/MWR-D-14-00091.1.
33
895 Berner, J., Ha, S.Y., Hacker, J., Fournier, A., Snyder, C., 2011. Model uncertainty
in a mesoscale ensemble prediction system: Stochastic versus multiphysics
representations. Mon. Wea. Rev. 139, 1972{1995. doi:10.1175/
2010MWR3595.1.
Bonavita, M., Tr�emolet, Y., Holm, E., Lang, S., Chrust, M., Janiskov�a, M.,
900 Lopez, P., Laloyaux, P., De Rosnay, P., Fisher, M., Hamrud, M., English, S.,
2017. A Strategy for Data Assimilation. Technical Memorandum. ECMWF.
doi:10.21957/tx1epjd2p.
Bouttier, F., Vi�e, B., Nuissier, O., Raynaud, L., 2012. Impact of stochastic
physics in a convection-permitting ensemble. Mon. Wea. Rev. 11, 3706{3721.
905 doi:10.1175/MWR-D-12-00031.1.
Bouttier, F., Vi�e, B., Raynaud, L., Nuissier, O., M�en�etrier, B., 2016. Sensitivity
of the AROME ensemble to initial and surface perturbations during HyMeX.
Quart. J. Royal Meteor. Soc. 142, 390{403. doi:10.1002/qj.2622.
Bowler, N., Arribas, A., Mylne, K., Robertson, K., Beare, S., 2008. The MO910
GREPS short-range ensemble prediction system. Quart. J. Royal Meteor.
Soc. 134, 703{722. doi:10.1002/qj.234.
Buizza, R., Houtekamer, P.L., Toth, Z., Pellerin, G., Wei, M., Zhu, Y., 2005.
A comparison of the ECMWF, MSC, and NCEP global ensemble prediction
systems. Mon. Wea. Rev. 133, 1076{1097. doi:10.1175/MWR2905.1.
915 Buizza, R., Leutbecher, M., 2015. The forecast skill horizon. Quart. J. Royal
Meteor. Soc. 141, 3366{3382. doi:10.1002/qj.2619.
Buizza, R., Miller, M., Palmer, T.N., 1999. Stochastic representation of model
uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Royal
Meteor. Soc 125, 2887{2908. doi:10.1256/smsqj.56005.
920 Carri�o, D., Homar, V. Wheatley, D., 2019. Potential of an EnKF storm-scale
data assimilation system over sparse observation regions with complex orography.
Atmos. Res. 216, 186{206. doi:10.1016/j.atmosres.2018.10.004.
34
Chen, X., Yuan, H., Xue, M., 2018. Spatial spread-skill relationship in terms of
agreement scales for precipitation forecasts in a convection-allowing ensemble.
925 Quart. J. Royal Meteor. Soc. 144, 85{98. doi:10.1002/qj.3186.
Christensen, H., Lock, S., Moroz, I., Palmer, T., 2017. Introducing independent
patterns into the Stochastically Perturbed Parametrization tendencies
(SPPT) scheme. Quart. J. Royal Meteor. Soc. 143, 2168{2181.
doi:10.1002/qj.3075.
930 Christensen, H., Moroz, I., Palmer, T., 2015. Stochastic and perturbed parameter
representations of model uncertainty in convection parameterization. J.
Atmos. Sci. 72, 2525{2544. doi:10.1111/j.2153-3490.1955.tb01138.x.
Cintineo, R., Stensrud, D., 2013. On the predictability of supercell thunderstorm
evolution. J. Atmos. Sci. 70, 1993{2011. doi:10.1175/JAS-D-12-0166.1.
935 Clark, A., Kain, J., Stensrud, D., Xue, M., Kong, F., Coniglio, M.C., Thomas,
K.W., Wang, Y., Brewster, K. Gao, J., Wang, X., 2011. Probabilistic
precipitation forecast skill as a function of ensemble size and spatial
scale in a convection-allowing ensemble. Mon. Wea. Rev. 139, 1410{1418.
doi:10.1175/2010mwr3624.1.
940 Clarke, A., Uehara, T., Porter, J., 1997. Atmospheric nuclei and related aerosol
�elds over the Atlantic: Clean subsiding air and continental pollution during
ASTEX. J. Geophys. Res. Atmospheres 102, 25281{25292. doi:10.1029/
97jd01555.
Coniglio, M., Correia, J., Marsh, P., Kong, F., 2013. Veri�cation of convection945
allowingWRF model forecasts of the planetary boundary layer using sounding
observations. Wea. Forecasting 28, 842{862. doi:10.1175/WAF-D-12-00103.
1.
Consorcio de Compensaci�on de Seguros (CCS), 2019. Cuarta nota informativa
del consorcio de compensaci�on de seguros sobre las in950
undaciones producidas entre los d��as 11 y 15 de septiembre en
35
el sureste principalmente. URL: https://www.consorseguros.
es/web/noticias/-/asset_publisher/ya2OdYGgbjgX/content/
cuarta-nota-informativa-del-consorcio-de-compensacion-de-seguros-sobre-las-inundaciones-producidas-entre-los-dias-11-y-15-de-seDegelia, S., Wang, X., Stensrud, D., Johnson, A., 2018. Understanding the
955 impact of radar and in situ observations on the prediction of a nocturnal
convection initiation event on 25 June 2013 using an ensemble-based
multiscale data assimilation system. Mon. Wea. Rev. 146, 1837{1859.
doi:10.1175/MWR-D-17-0128.1.
Descamps, L., Labadie, C., Joly, A., Bazile, E., Arbogast, P., C�ebron, P., 2015.
960 PEARP, the M�et�eo-France short-range ensemble prediction system. Quart.
J. Royal Meteorol. Soc. 141, 1671{1685. doi:10.1002/qj.2469.
Du, J., DiMego, G., Zhou, B., Jovic, D., Ferrier, B., Yang, B., 2015. Regional
ensemble forecast systems at NCEP, in: 27th Conference on Weather
Analysis and Forecasting/23rd Conference on Numerical Weather Prediction,
965 Amer. Meteor. Soc., Chicago. p. 14 pp. URL: https://ams.confex.com/
ams/27WAF23NWP/webprogram/Paper273421.html.
Duc, L., Saito, K., Seko, H., 2013. Spatial-temporal fractions veri�cation
for high-resolution ensemble forecasts. Tellus A 65, 18171. doi:10.3402/
tellusa.v65i0.18171.
970 Ducrocq, V., Nuissier, O., Ricard, D., Lebeaupin, C., Thouvenin, T., 2008.
A numerical study of three catastrophic precipitating events over southern
France. II: Mesoscale triggering and stationarity factors. Quart. J. Royal
Meteor. Soc. 134, 131{145. doi:10.1002/qj.199.
Duda, J., Wang, X., Xue, M., 2017. Sensitivity of convection-allowing forecasts
975 to land surface model perturbations and implications for ensemble design.
Mon. Wea. Rev. 145, 2001{2025. doi:10.1175/MWR-D-16-0349.1.
Ebert, E., 2008. Fuzzy veri�cation of high-resolution gridded forecasts: A review
and proposed framework. Meteor. Appl. 15, 51{64. doi:10.1002/met.25.
36
Ehrendorfer, M., 1994. The Liouville equation and its potential usefulness for
980 the prediction of forecast skill. Part I: Theory. Mon. Wea. Rev. 122, 703{713.
doi:10.1175/1520-0493(1994)122<0703:TLEAIP>2.0.CO;2.
Faccini, F., Paliaga, G., Piana, P., Sacchini, A., Watkins, C., 2016. The Bisagno
stream catchment (Genoa, Italy) and its major
oods: geomorphic and land
use variations in the last three centuries. Geomporphology 273, 14{27. doi:10.
985 1016/j.geomorph.2016.07.037.
Falk, N., Igel, A., Igel, M., 2019. The relative impact of ice fall speeds and
microphysics parameterization complexity on supercell evolution. Mon. Wea.
Rev. 147, 2403{2415. doi:10.1175/MWR-D-18-0417.1.
Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D., Tanelli,
990 S., Parodi, A., 2014. Analysis and hindcast simulations of an extreme rainfall
event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 138,
13{29. doi:10.1016/j.atmosres.2013.10.007.
Freud, E., Rosenfeld, D., Kulkarni, J.R., 2011. Resolving both entrainmentmixing
and number of activated CCN in deep convective clouds. Atmos.
995 Chem. Phys. 11, 12887{12890. doi:10.5194/acp-11-12887-2011.
Frogner, I., Singleton, A., K�ltzow, M., Andrae, U., 2019. Convectionpermitting
ensembles: Challenges related to their design and use. Quart.
J. Royal Meteor. Soc. 145, 90{106. doi:10.1002/qj.3525.
Garc��a-Moya, J., Callado-Pallar�es, A., Escrib�a, P., Santos, C., Santos-Muoz, D.,
1000 Simarro, J., 2011. Predictability of short-range forecasting: A multimodel
approach. Tellus A 63, 550{563. doi:10.1111/j.1600-0870.2010.00506.x.
Gasperoni, N., Wang, X., Wang, Y., 2020. A comparison of methods to sample
model errors for convection-allowing ensemble forecasts in the setting of
multiscale initial conditions produced by the GSI-based EnVar assimilation
1005 system. Mon. Wea. Rev. 148, 1177{1203. doi:10.1175/MWR-D-19-0124.1.
37
Goger, B., Rotach, M., Gohm, A., Stiperski, I., Fuhrer, O., 2016. Current
challenges for numerical weather prediction in complex terrain: Topography
representation and parameterizations, in: 2016 International Conference on
High Performance Computing and Simulation, HPCS 2016, Innsbruck, Aus-
1010 tria. pp. 890{894. doi:10.1109/HPCSim.2016.7568428.
Gowan, T., Steenburgh, W., Schwartz, C., 2018. Validation of mountain precipitation
forecasts from the convection-permitting NCAR ensemble and operational
forecast systems over the western United States. Wea. Forecasting
33, 739{765. doi:10.1175/WAF-D-17-0144.1.
1015 Hacker, J., Ha, S., Snyder, C., Berner, J., Eckel, F., Kuchera, E., Pocernich,
M., Rugg, S., Schramm, J., Wang, X., 2011a. The U.S. Air Force Weather
Agency's mesoscale ensemble: Scienti�c description and performance results.
Tellus A 63, 625{641. doi:10.1111/j.1600-0870.2010.00497.x.
Hacker, J., Snyder, C., Ha, S., Pocernich, M., 2011b. Linear and non-linear
1020 response to parameter variations in a mesoscale model. Tellus A 63, 429{444.
doi:10.1111/j.1600-0870.2010.00505.x.
Hasselmann, K., 1976. Stochastic climate models Part I. Theory. Tellus 125,
2487{2515. doi:10.1256/smsqj.55907.
Hermoso, A., Homar, V., Amengual, A., 2021. The sequence of heavy precipi1025
tation and
ash
ooding of 12 and 13 September 2019 in eastern Spain. Part
I: Mesoscale diagnostic and sensitivity analysis of precipitation. J. Hydrometeor.
doi:10.1175/JHM-D-20-0182.1.
Hermoso, A., Homar, V., Greybush, S., Stensrud, D., 2020b. Tailored ensemble
prediction systems: Application of seamless scale bred vectors. J. Meteor.
1030 Soc. Japan 98. doi:10.2151/jmsj.2020-053.
Hermoso, A., Homar, V., Yano, J.I., 2020a. Exploring the limits of ensemble
forecasting via solutions of the Liouville equation for realistic geophysical
models. Atmos. Res. 245, 105127. doi:10.1016/j.atmosres.2020.105127.
38
Hohenegger, C., Sch�ar, C., 2007. Predictability and error growth dynam-
1035 ics in cloud-resolving models. J. Atmos. Sci. 64, 4467{4478. doi:10.1175/
2007jas2143.1.
Homar, V., Ramis, C., Alonso, S., 2002. A deep cyclone of African origin
over the Western Mediterranean: Diagnosis and numerical simulation. Ann.
Geophys. 131, 93{106. doi:10.5194/angeo-20-93-2002.
1040 Hong, S., Lim, J., 2006. The WRF Single-Moment 6-Class Microphysics Scheme
(WSM6). J. Korean Meteor. Soc. 42, 129{151.
Hou, D., Kalnay, E., Droegemeier, K., 2001. Objective veri�cation of the
SAMEX '98 ensemble forecasts. Mon. Wea. Rev. 129, 73{91. doi:10.1175/
1520-0493(2001)129<0073:OVOTSE>2.0.CO;2.
1045 Houtekamer, P., Mitchell, H., Deng, X., 2009. Model error representation in
an operational ensemble Kalman �lter. Mon. Wea. Rev. 137, 2126{2143.
doi:10.1175/2008MWR2737.1.
Hudson, J., Mishra, S., 2007. Relationships between CCN and cloud microphysics
variations in clean maritime air. Geophys. Res. Lett. 34. doi:10.
1050 1029/2007GL030044.
Iacono, M., Delamere, J., Mlawer, E., Shephard, M., Clough, S., Collins, W.,
2008. Radiative forcing by long-lived greenhouse gases: Calculations with the
AER radiative transfer models. J. Geophys. Res. Atmospheres 113, D13103.
doi:10.1029/2008JD009944.
1055 Iizuka, S., Nakamura, H., 2019. Sensitivity of midlatitude heavy precipitation
to SST: A case study in the Sea of Japan area on 9 August 2013. J. Geophys.
Res. Atmospheres 124, 4365{4381. doi:10.1029/2018JD029503.
Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M.,
Raynaud, L., 2010. Ensemble of data assimilations at ECMWF. Technical
1060 Memorandum. ECMWF. doi:10.21957/obke4k60.
39
Ivatek-�Sahdan, S., Stane�si�c, A., Tudor, M., Odak Plenkovi�c, I., Janekovi�c, I.,
2018. Impact of SST on heavy rainfall events on eastern Adriatic during SOP1
of HyMeX. Atmos. Res. 200, 36{59. doi:10.1016/j.atmosres.2017.09.019.
Janjic, Z., 1994. The step-mountain eta coordinate model: Further developments
1065 of the convection, viscous sublayer, and turbulence closure schemes.
Mon. Wea. Rev. 122, 927{945. doi:10.1175/1520-0493(1994)122<0927:
TSMECM>2.0.CO;2.
Jankov, I., Beck, J., Wol�, J., Harrold, M., Olson, J., Smirnova, T., Alexander,
C., Berner, J., 2019. Stochastically perturbed parameterizations in
1070 an HRRR-based ensemble. Mon. Wea. Rev. 147, 153{173. doi:10.1175/
MWR-D-18-0092.1.
Jankov, I., Berner, J., Coausthors, 2017. A performance comparison between
multiphysics and stochastic approaches within a North American RAP ensemble.
Mon. Wea. Rev. 145, 1161{1179. doi:10.1175/MWR-D-16-0160.1.
1075 Jankov, I., Gallus, W., Segal, M., Shaw, B., Koch, S., 2005. The impact of
di�erent WRF model physical parameterizations and their interactions on
warm season MCS rainfall. Wea. Forecasting 20, 1048{1060. doi:10.1175/
WAF888.1.
Johnson, A., Wang, X., 2016. A study of multiscale initial condition perturba1080
tion methods for convection-permitting ensemble forecasts. Mon. Wea. Rev.
144, 2579{2604. doi:10.1175/MWR-D-16-0056.1.
Jolli�e, I.T., Stephenson, D.B., 2003. Forecast veri�cation. A practitioner's
guide in atmospheric science. Wiley.
Kazumori, M., 2014. Satellite radiance assimilation in the JMA operational
1085 mesoscale 4DVAR system. Mon. Wea. Rev. 1361-1381, 216{230. doi:10.
1175/MWR-D-13-00135.1.
Keil, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., Barthlott, C., 2019.
Relative contribution of soil moisture, boundary-layer and microphysical per-
40
turbations on convective predictability in di�erent weather regimes. Quart.
1090 J. Royal Meteor. Soc. 145, 3102{3115. doi:10.1002/qj.3607.
Keresturi, E., Wang, Y., Meier, F., Weidle, F., Wittmann, C., Atencia, A.,
2019. Improving initial condition perturbations in a convection-permitting
ensemble prediction system. Quart. J. Royal Meteor. Soc. 145, 993{1012.
doi:10.1002/qj.3473.
1095 Klasa, C., Arpagaus, M., Walser, A., Wernli, H., 2018. An evaluation of the
convection-permitting ensemble COSMO-E for three contrasting precipitation
events in Switzerland. Quart. J. Royal Meteor. Soc. 144, 744{764. doi:10.
1002/qj.3245.
Kober, K., Craig, G., 2016. Physically based stochastic perturbations (PSP)
1100 in the boundary layer to represent uncertainty in convective initiation. J.
Atmos. Sci. 73, 2893{2911. doi:10.1175/JAS-D-15-0144.1.
K�uhnlein, C., Keil, C., Craig, G., Gebhardt, C., 2014. The impact of downscaled
initial condition perturbations on convective-scale ensemble forecasts
of precipitation. Quart. J. Royal Meteor. Soc. 140, 1552{1562. doi:10.1002/
1105 qj.2238.
Lagasio, M., Parodi, A., Procopio, R., Rachidi, F., Fiori, E., 2017. Lightning
potential index performances in multimicrophysical cloud-resolving simulations
of a back-building mesoscale convective system: The Genoa 2014 event.
J. Geophys. Res. Atmos. 122, 4238{4257. doi:10.1002/2016JD026115.
1110 Lang, S.K., Lock, S., Leutbecher, M., Bechtold, P., Forbes, R., 2021. Revision
of the SPP model uncertainty scheme in the IFS. Quart. J. Royal Meteor.
Soc. doi:10.1002/qj.3978.
Leutbecher, M., Lock, S., Ollinaho, P., Lang, S., Balsamo, G., Bechtold, P.,
Bonavita, M., Christensen, H., Diamantakis, M., Dutra, E., English, S.,
1115 Fisher, M., Forbes, R., Goddard, J., Haiden, T., Hogan, R., Juricke, S.,
Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart, S., Sandu,
41
I., Smolarkiewicz, P., Subramanian, A., Vitart, F., Wedi, N., Weisheimer, A.,
2017. Stochastic representations of model uncertainties at ECMWF: state
of the art and future vision. Quart. J. Royal Meteor. Soc. 143, 2315{2339.
1120 doi:10.1002/qj.3094.
Li, Y., Lu, G., Wu, Z., He, H., Shi, J., Ma, Y., Weng, S., 2016. Evaluation
of optimized WRF precipitation forecast over a complex topography region
during
ood season. Atmosphere 7, 145. doi:10.3390/atmos7110145.
Llasat, M.C., Llasat-Botija, M., Rodr��guez, A., Lindbergh, S., 2010. Flash
oods
1125 in catalonia: A recurrent situation. Adv. Geosci. 126, 105{111. doi:10.5194/
adgeo-26-105-2010.
Lock, S., Lang, S., Leutbecher, M., Hogan, R., Vitart, F., 2019. Treatment
of model uncertainty from radiation by the Stochastically Perturbed
Parametrization Tendencies (SPPT) scheme and associated revisions in the
1130 ECMWF ensembles. Quart. J. Royal Meteor. Soc. 145, 75{89. doi:10.1002/
qj.3570.
Lorenz, E., 1963. Deterministic nonperiodic
ow. J. Atmos. Sci. 20, 130{141.
doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Lorenz, E., 1969. The predictability of a
ow which possesses many scales of
1135 motion. Tellus 21, 289{307. doi:10.3402/tellusa.v21i3.10086.
Lorenzo-Lacruz, J., Amengual, A., Garcia, C., Mor�an-Tejeda, E., Homar,
V., Maim�o-Far, A., Hermoso, A., Ramis, C., Romero, R., 2019. Hydrometeorological
reconstruction and geomorphological impact assessment of the
October 2018 catastrophic
ash
ood at Sant Lloren�c, Mallorca (Spain). Nat.
1140 Hazards Earth Syst. Sci. 19, 2597{2617. doi:10.5194/nhess-19-2597-2019.
Lupo, K., Torn, R., Yang, S., 2020. Evaluation of stochastic perturbed
parameterization tendencies on convective-permitting ensemble forecasts of
heavy rainfall events in New York and Taiwan. Wea. Forecasting 35, 5{24.
doi:10.1175/WAF-D-19-0064.1.
42
1145 Mansell, E., Ziegler, C., Bruning, E., 2010. Simulated electri�cation of a small
thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 67, 171{
194. doi:10.1175/2009JAS2965.1.
Marsigli, C., Montani, A., Paccagnella, T., 2014. Provision of boundary
conditions for a convection-permitting ensemble: Comparison of two dif1150
ferent approaches. Nonlin. Proc. Geophys. 21, 393{403. doi:10.5194/
npg-21-393-2014.
Mason, I., 1982. A model for assessment of weather forecasts. Aust. Meteor.
Mag. 30, 291{303.
Mason, S., Graham, N., 2002. Areas beneath the relative operating charac1155
teristics (ROC) and relative operating levels (ROL) curves: Statistical signi
�cance and interpretation. Quart. J. Royal Meteor. Soc. 128, 2145{2166.
doi:10.1256/003590002320603584.
McCabe, A., Swinbank, R., Tennant, W., Lock, A., 2016. Representing model
uncertainty in the Met O�ce convection-permitting ensemble prediction sys1160
tem and its impact on fog forecasting. Quart. J. Royal Meteor. Soc. 142,
2897{2910. doi:10.1002/qj.2876.
Melhauser, C., Zhang, F., 2012. Practical and intrinsic predictability of severe
and convective weather at the mesoscales. J. Atmos. Sci. 69, 3350{3371.
doi:10.1175/JAS-D-11-0315.1.
1165 Molteni, F., Buizza, R., Palmer, T.N., Petroliagis, T., 1996. The ECMWF
ensemble prediction system: Methodology and validation. Quart. J. Royal
Meteor. Soc. 122, 73{119. doi:10.1256/smsqj.52904.
Morales, A., Posselt, D., Morrison, H., He, F., 2019. Assessing the in
uence
of microphysical and environmental parameter perturbations on orographic
1170 precipitation. J. Atmos. Sci. 76, 1373{1395. doi:10.1175/JAS-D-18-0301.1.
Y�a~nez Morroni, G., Giron�as, J., Caneo, M., Delgado, R., Garreaud, R., 2018.
Using the Weather Research and Forecasting (WRF) model for precipitation
43
forecasting in an Andean region with complex topography. Atmosphere 9,
304. doi:10.3390/atmos9080304.
1175 Nakanisi, M., Niino, H., 2006. An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection fog.
Boundary-Layer Meteor. 119, 397{407. doi:10.1007/s10546-005-9030-8.
Nuissier, O., Ducrocq, D., Ricard, D., Lebeaupin, C., Anquetin, S., 2008. A numerical
study of three catastrophic precipitating events over southern France.
1180 I: Numerical framework and synoptic ingredients. Quart J. Royal Meteor. Soc.
134, 111{130. doi:10.1002/qj.200.
Okamoto, K., Sawada, Y., Kunii, M., 2019. Comparison of assimilating allsky
and clear-sky infrared radiances from Himawari-8 in a mesoscale system.
Quart. J. Royal Meteor. Soc. 145, 745{766. doi:10.1002/qj.3463.
1185 Ollinaho, P., Lock, S., Leutbecher, M., Bechtold, P., Beljaars, A., Bozzo, A.,
Forbes, R., Haiden, T., Hogan, R., Sandu, I., 2017. Towards process-level
representation of model uncertainties: stochastically perturbed parametrizations
in the ECMWF ensemble. Quart. J. Royal Meteor. Soc. 143, 408{422.
doi:10.1002/qj.2931.
1190 Palmer, T., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts,
G., Steinheimer, M., Weisheimer, A., 2009. Stochastic Parametrization
and Model Uncertainty. Technical Memorandum. ECMWF. doi:10.21957/
ps8gbwbdv.
Peralta, C., Ben Bouall�egue, Z., Theis, S.E., Gebhardt, C., Buchhold, M., 2012.
1195 Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys.
Res. Atmospheres 117, 1{13. doi:10.1029/2011JD016581.
Phillips, V., Donner, L., Garner, S., 2007. Nucleation processes in deep convection
simulated by a cloud-system-resolving model with double-moment bulk
microphysics. J. Atmos. Sci. 64, 738{761. doi:10.1175/JAS3869.1.
44
Posselt, 1200 D., He, F., Bukowski, J., Reid, J., 2019. On the relative sensitivity
of a tropical deep convective storm to changes in environment and
cloud microphysical parameters. J. Atmos. Sci. 76, 1163{1185. doi:10.1175/
JAS-D-18-0181.1.
Primo, C., Rodr��guez, M., Guti�errez, J., 2008. Logarithmic bred vectors. A new
1205 ensemble method with adjustable spread and calibration time. J. Geophys.
Res. Atmospheres 113, 1{11. doi:10.1029/2007JD008998.
Prospero, J., 1996. Saharan dust transport over the North Atlantic ocean
and Mediterranean: An overview, in: Guerzoni, S., Chester, R. (Eds.),
The Impact of Desert Dust Across the Mediterranean. Environmental Sci1210
ence and Technology Library. Springer, Dordrecht. volume 11, pp. 133{151.
doi:10.1007/978-94-017-3354-0_13.
Qiao, X., Wang, S., Min, J., 2018. The impact of a stochastically perturbing
microphysics scheme on an idealized supercell storm. Mon. Wea. Rev. 146,
95{118. doi:10.1175/MWR-D-17-0064.1.
1215 Ramis, C., Romero, R., Homar, V., Alonso, S., Alarco�n, M., 1998. Diagnosis and
numerical simulation of a torrential precipitation event in Catalonia (Spain).
Meteor. Atmos. Phys. 69, 1{21. doi:10.1007/BF01025180.
Romero, R., Sumner, G., Ramis, C., Genov�es, A., 1999. A classi�cation of the
atmospheric circulation patterns producing signi�cant daily rainfall in the
1220 Spanish Mediterranean area. Int. J. Climatol. 19, 765{785. doi:10.1002/
(SICI)1097-0088(19990615)19:7<765::AID-JOC388>3.0.CO;2-T.
Romine, G., Scwartz, C., Berner, J., Fossell, K., Snyder, C., Anderson, J., Weisman,
M., 2014. Representing forecast error in a convection-permitting ensemble
system. Mon. Wea. Rev. 142, 4519{4541. doi:10.1175/MWR-D-14-00100.
1225 1.
Romine, G., Scwartz, C., Snyder, C., Anderson, J., M.L., W., 2013. Model bias
in a continuously cycled assimilation system and its in
uence on convection-
45
permitting forecasts. Mon. Wea. Rev. 141, 1263{1284. doi:10.1175/
MWR-D-12-00112.1.
1230 Roux, H., Amengual, A., Romero, R., Blad�e, E., Sanz-Ramos, M., 2020. Evaluation
of two hydrometeorological ensemble strategies for
ash-
ood forecasting
over a catchment of the eastern Pyrenees. Nat. Hazards Earth Syst. Sci. 20,
425{450. doi:10.5194/nhess-20-425-2020.
Schellander-Gorgas, T., Wang, Y., Meier, F., Weidle, F., Wittmann, C., Kann,
1235 A., 2017. On the forecast skill of a convection-permitting ensemble. Geosci.
Model Dev. 10, 35{56. doi:10.5194/gmd-10-35-2017.
Schwartz, C., Romine, G., Smith, K., Weisman, M., 2014. Characterizing and
optimizing precipitation forecasts from a convection-permitting ensemble initialized
by a mesoscale ensemble kalman �lter. Wea. Forecasting 29, 1295{
1240 1318. doi:10.1175/WAF-D-13-00145.1s.
Schwartz, C., Sobash, R., 2017. Generating probabilistic forecasts from
convection-allowing ensembles using neighborhood approaches: A review
and recommendations. Mon. Wea. Rev. 145, 3397{3418. doi:10.1175/
MWR-D-16-0400.1.
1245 Selz, T., Craig, G., 2015. Upscale error growth in a high-resolution simulation
of a summertime weather event over Europe. Mon. Wea. Rev. 143, 813{827.
doi:10.1175/MWR-D-14-00140.1.
Senatore, A., Furnari, L., Mendicino, G., 2020. Impact of high-resolution sea
surface temperature representation on the forecast of small Mediterranean
1250 catchments' hydrological responses to heavy precipitation. Hydrol. Earth
Syst. Sci. 24, 269{291. doi:10.5194/hess-24-269-2020.
Shutts, G., 2005. A kinetic energy backscatter algorithm for use in ensemble
prediction systems. Quart. J. Royal Meteor. Soc. 131, 3079{3102. doi:10.
1256/qj.04.106.
46
1255 Skamarock, W., Klemp, J., Dudhia, J. Gill, D.O., Barker, D., Duda, M.G.,
Huang, X.Y., Wang, W., Powers, J.G., 2008. A Description of the Advanced
Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR. doi:10.
5065/D6DZ069T.
Smirnova, T., Brown, J., Benjamin, S., Kenyon, J., 2016. Modi�cations to the
1260 Rapid Update Cycle land surface model (RUC LSM) available in the weather
research and forecasting (WRF) model. Mon. Wea. Rev. 144, 1851{1865.
doi:10.1175/MWR-D-15-0198.1.
Stensrud, D., Brooks, H., Du, J., Tracton, M., Rogers, E., 1999. Using ensembles
for short-range forecasting. Mon. Wea. Rev. 127, 433{446. doi:10.1175/
1265 1520-0493(1999)127<0433:UEFSRF>2.0.CO;2.
Stocchi, P., Davolio, S., 2017. Intense air-sea exchanges and heavy orographic
precipitation over Italy: The role of Adriatic sea surface temperature uncertainty.
Atmos. Res. 196, 62{82. doi:10.1016/j.atmosres.2017.06.004.
Sun, Y., Zhang, F., 2016. No access intrinsic versus practical limits of atmo1270
spheric predictability and the signi�cance of the butter
y e�ect. J. Atmos.
Sci. 73, 1419{1438. doi:10.1175/JAS-D-15-0142.1.
Surcel, M., Zawadzki, I., Yau, M., 2015. A study on the scale dependence
of the predictability of precipitation patterns. J. Atmos. Sci. 72, 216{235.
doi:10.1175/JAS-D-14-0071.1.
1275 Tennant, W., Beare, S., 2014. New schemes to perturb sea-surface temperature
and soil moisture content in MOGREPS. Quart. J. Royal Meteor. Soc. 140,
1150{1160. doi:10.1002/qj.2202.
Thanh, C., Tien, T., Chanh, K., 2016. Application of breeding ensemble to
tropical cyclone track forecasts using the Regional Atmospheric Modeling
1280 System (RAMS) model. Appl. Math. Model. 40, 8309{8325. doi:10.1016/j.
apm.2016.04.010.
47
Thompson, G., Field, P., Rasmussen, R., Hall, W., 2008. Explicit forecasts
of winter precipitation using an improved bulk microphysics scheme. Part
II: Implementation of a new snow parameterization. Mon. Wea. Rev. 136,
1285 5095{5115. doi:10.1175/2008MWR2387.1.
Tian, J., Liu, J., Yan, D., Ding, L., Li, C., 2019. Ensemble
ood forecasting
based on a coupled atmospheric-hydrological modeling system with data assimilation.
Atmos. Res. 224, 127{137. doi:10.1016/j.atmosres.2019.03.
029.
1290 Toth, Z., Kalnay, E., 1993. Ensemble forecasting at NMC: The generation
of perturbations. Bull. Amer. Meteor. Soc. 74, 2317{2330. doi:110.1175/
1520-0477(1993)074<2317:EFANTG>2.0.CO;2.
Velden, C., Lewis, W., Bresky, W., Stettner, D., Daniels, J., Wanzong, S., 2017.
Assimilation of high-resolution satellite-derived atmospheric motion vectors:
1295 Impact on HWRF forecasts of tropical cyclone track and intensity. Mon. Wea.
Rev. 145, 1107{1125. doi:10.1175/mwr-d-16-0229.1.
Vi�e, B., Nuissier, O., Ducrocq, V., 2011. Cloud-resolving ensemble simulations
of Mediterranean heavy precipitating events: Uncertainty on initial conditions
and lateral boundary conditions. Mon.Wea. Rev. 139, 403{423. doi:10.1175/
1300 2010mwr3487.1.
Wang, S., Qiao, X., Min, J., 2020. Impact of stochastically perturbed terminal
velocities on convective-scale ensemble forecasts of precipitation. Adv.
Meteorol. 2020. doi:10.1155/2020/4234361.
Wang, Y., Bellus, M., Wittmann, C., Steinheimer, M., Weidle, F., Kann, A.,
1305 Ivatek-S�ahdan, S., Tian, W., Ma, X., Tascu, S., Bazile, E., 2011. The Central
European limited-area ensemble forecasting system: ALADIN-LAEF. Quart.
J. Royal Meteor. Soc. 137, 483{502. doi:10.1002/qj.751.
Wang, Y., Wang, X., 2017. A pseudorandom number generator based on
48
piecewise logistic map. Mon. Wea. Rev. 145, 1447{1471. doi:10.1175/
1310 MWR-D-16-0231.1.
Wastl, C., Wang, Y., Atencia, A., Wittmann, C., 2019a. Independent perturbations
for physics parametrization tendencies in a convection-permitting
ensemble (pSPPT). Geosci. Model Dev. 12, 261{273. doi:10.5194/
gmd-12-261-2019.
1315 Wastl, C., Wang, Y., Atencia, A., Wittmann, C., 2019b. A hybrid stochastically
perturbed parametrization scheme in a convection-permitting ensemble. Mon.
Wea. Rev. 147, 2217{2230. doi:10.1175/MWR-D-18-0415.1.
Wheatley, D., Yussouf, N., Stensrud, D., 2014. Ensemble Kalman �lter analyses
and forecasts of a severe mesoscale convective system using di�erent choices
1320 of microphysics schemes. Mon. Wea. Rev. 142, 3243{3263. doi:10.1175/
MWR-D-13-00260.1.
Whitaker, J., Hamill, T., Wei, X., Song, Y., Toth, Z., 2008. Ensemble data
assimilation with the NCEP global forecast system. Mon. Wea. Rev. 136,
463{482. doi:10.1175/2007MWR2018.1.
1325 White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G., Kipling,
Z., 2017. Uncertainty from the choice of microphysics scheme in convectionpermitting
models signi�cantly exceeds aerosol e�ects. Atmos. Chem. Phys.
17, 12145{12175. doi:10.5194/acp-17-12145-2017.
Xu, Z., Chen, J., Jin, Z., Li, H., Chen, F., 2020. Representing model uncer1330
tainty by multi-stochastic physics approaches in the GRAPES ensemble. Adv.
Atmos. Sci. 37, 328{346. doi:10.1007/s00376-020-9171-1.
Yussouf, N., Stensrud, D., 2012. Comparison of single-parameter and multiparameter
ensembles for assimilation of radar observations using the Ensemble
Kalman Filter. Mon. Wea. Rev. 140, 562{586. doi:10.1175/
1335 MWR-D-10-05074.1.
49
Zhang, S., Pu, Z., Velden, C., 2018. Impact of enhanced atmospheric motion
vectors on HWRF hurricane analyses and forecasts with di�erent data assimilation
con�gurations. Mon. Wea. Rev. 146, 1549{1569. doi:10.1175/
MWR-D-17-0136.1.
1340 Zhang, X., 2019. Multiscale characteristics of di�erent-source perturbations
and their interactions for convection-permitting ensemble forecasting during
SCMREX. Mon. Wea. Rev. 147, 291{310. doi:10.1175/MWR-D-18-0218.1.
Zhang, Y., Zhang, F., Stensrud, D., Meng, Z., 2015. Practical predictability of
the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to
1345 synoptic timing and topographical in
uence. Mon.Wea. Rev. 143, 2973{2997.
doi:10.1175/MWR-D-14-00394.1.
Zhang, Y., Zhang, F., Stensrud, D., Meng, Z., 2016. Intrinsic predictability of
the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales.
Mon. Wea. Rev. 144, 1273{1298. doi:10.1175/MWR-D-15-0105.1. University Staff: Request a correction | Centaur Editors: Update this record |