References
1. REN21 Renewables 2019 Global Status Report; REN21: Paris, France, 2020.
2. Lovegrove, K.; Stein, W., Concentrating Solar Power Technology: Principles, Developments and Applications. 1st ed.; Woodhead Publishing: United Kingdom, 2012.
3. Forrester, J., The Value of CSP with Thermal Energy Storage in Providing Grid Stability. Energy Procedia 2014, 49, 1632-1641.
4. Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N., Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-fine Particles). Netsu Bussei 1993, 7, 227-233.
5. Choi, S. U. S.; Eastman, J. A., Enhancing Thermal Conductivity of Fluids with Nanoparticles. In ASME IMECE, 1995; Vol. 231, pp 99-106.
6. Manikandan, S.; Rajan, K. S., MgO-Therminol 55 Nanofluids for Efficient Energy Management: Analysis of Transient Heat Transfer Performance. Energy 2015, 88, 408-416.
7. Colangelo, G.; Favale, E.; Miglietta, P.; Milanese, M.; De Risi, A., Thermal Conductivity, Viscosity and Stability of Al2O3-Diathermic Oil Nanofluids for Solar Energy Systems. Energy 2016, 95, 124-136.
8. Gómez-Villarejo, R.; Martín, E. I.; Navas, J.; Sánchez-Coronilla, A.; Aguilar, T.; Gallardo, J. J.; Alcántara, R.; De los Santos, D.; Carrillo-Berdugo, I.; Fernández-Lorenzo, C., Ag-based Nanofluidic System to Enhance Heat Transfer Fluids for Concentrating Solar Power: Nano-level Insights. Appl. Energy 2017, 194, 19-29.
9. Teruel, M.; Aguilar, T.; Martínez-Merino, P.; Carrillo-Berdugo, I.; Gallardo, J. J.; Gómez-Villarejo, R.; Alcántara, R.; Fernández-Lorenzo, C.; Navas, J., 2D MoSe2-based nanofluids prepared by liquid phase exfoliation for heat transfer applications in concentrating solar power. Sol. Energ. Mat. Sol. C. 2019, 200, 109972, 1-11.
10. Aguilar, T.; Sani, E.; Mercatelli, L.; Carrillo-Berdugo, I.; Torres, E.; Navas, J., Exfoliated Graphene Oxide-based Nanofluids with Enhanced Thermal and Optical Properties for Solar Collectors in Concentrating Solar Power. J. Mol. Liq. 2020, 306, 112862, 1-9.
11. Chen, Y. Y.; Walvekar, R.; Khalid, M.; Shahbaz, K.; Gupta, T. C. S. M., Stability and Thermophysical Studies on Deep Eutectic Solvent-based Carbon Nanotube Nanofluid. Mater. Res. Express 2017, 4, 075028, 1-16.
12. Ilyas, S. U.; Pendyala, R.; Narahari, M., Stability and Thermal Analysis of MWCNT – Thermal Oil-based Nanofluids. Colloids Surf., A 2017, 527, 11-22.
13. Hordy, N.; Rabilloud, D.; Meunier, J.-L.; Coulombe, S., High Temperature and Long-term Stability of Carbon Nanotube Nanofluids for Direct Absorption Solar Thermal Collectors. Solar Energy 2014, 105, 82-90.
14. Gimeno-Furio, A.; Hernandez, L.; Navarrete, N.; Mondragon, R., Characterisation Study of a Thermal Oil-based Carbon Black Solar Nanofluid. Renew. Energ. 2019, 140, 493-500.
15. Lee, R.; Kim, J. B.; Qin, C.; Lee, H.; Lee, B. J.; Jung, G. Y., Synthesis of Therminol-based Plasmonic Nanofluids with Core/Shell Nanoparticles and Characterization of their Absorption/Scattering Coefficients. Sol. Energy Mater. Sol. Cells 2020, 209, 110442, 1-8.
16. Khullar, V.; Tyagi, H.; Phelan, P. E.; Otanicar, T. P.; Singh, H.; Taylor, R. A., Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. J. Nanotechnol. Eng. Med. 2012, 3, 031003, 1-9.
17. Eggers, J. R.; Lange, E. M.; Kabelac, S., Radiation and Energetic Analysis of Nanofluid Based Volumetric Absorbers for Concentrated Solar Power. Nanomaterials 2018, 8, 838, 1-24.
18. Lenert, A.; Wang, E. N., Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion. Sol. Energy 2012, 86, 253-265.
19. Carrillo-Berdugo, I.; Midgley, S.; Zorrilla, D.; Grau-Crespo, R.; Navas, J., Understanding the Specific Heat Enhancement in Metal-containing Nanofluids for Thermal Energy Storage: Experimental and Ab-initio evidence for a Strong Interfacial Layering Effect. ACS Appl. Energy Mater. 2020, 3, 9246–9256.
20. Carrillo-Berdugo, I.; Grau-Crespo, R.; Zorrilla, D.; Navas, J., Interfacial molecular layering enhances specific heat of nanofluids: evidence from molecular dynamics. J. Mol. Liq. 2020, 325, 115217, 1-8.
21. Lim, B.; Jiang, M.; Tao, J.; Camargo, P. H. C.; Zhu, Y.; Xia, Y., Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Adv. Funct. Mater. 2009, 19, 189-200.
22. Sani, E.; Dell'Oro, A., Optical constants of ethylene glycol over an extremely wide spectral range. Opt. Mater. 2014, 37, 36-41.
23. Sani, E.; Dell'Oro, A., Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Opt. Mater. 2016, 60, 137-141.
24. Gómez-Villarejo, R.; Estellé, P.; Navas, J., Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Sol. Energ. Mat. Sol. C. 2020, 205, 110266, 1-13.
25. Martínez-Merino, P.; Midgley, S.; Martín, E. I.; Estellé, P.; Alcántara, R.; Sánchez-Coronilla, A.; Grau-Crespo, R.; Navas, J., Novel WS2-Based Nanofluids for Concentrating Solar Power: Performance Characterization and Molecular-Level Insights. ACS Appl. Mater. Interfaces 2020, 12, 5793-5804.
26. Torii, D.; Ohara, T.; Ishida, K., Molecular-Scale Mechanism of Thermal Resistance at the Solid-Liquid Interfaces: Influence of Interaction Parameters Between Solid and Liquid Molecules. J. Heat Transfer. 2010, 132, 012402, 1-9.
27. Wei, X.; Zhang, T.; Luo, T., Thermal Energy Transport across Hard–Soft Interfaces. ACS Energy Lett. 2017, 2, 2283-2292.
28. Akiner, T.; Kocer, E.; Mason, J. K.; Ertuck, H., Green–Kubo assessments of thermal transport in nanocolloids based on interfacial effects. Mater. Today Commun. 2019, 20, 100533, 1-6.
29. Yokoyama, T.; Ohta, T., Temperature-Dependent EXAFS Study on Supported Silver and Palladium Clusters: Comparison on Their Interatomic Potentials with Those of Bulk Metals. Jpn. J. Appl. Phys. 1990, 29, 2052-2058.
30. Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles. 1st ed.; Taylor & Francis Group: Abingdon, UK, 1988.
31. Plimpton, S.; Thompson, A.; Moore, S.; Kohlmeyer, A.; Berger, R. Large Atomic/Molecular Massively Parallel Simulator (LAMMPS), 17Nov2016; 2016.
32. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1-19.
33. Jewett, A. Moltemplate, 1.34; 2015.
34. Jewett, A. I.; Zhuang, Z.; Shea, J.-E., Moltemplate a Coarse-Grained Model Assembly Tool. Biophys. J. 2013, 104, 169a.
35. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. A 1967, 159, 98-103.
36. Nosé, S., A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255-268.
37. Nosé, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511-519.
38. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-space Distributions. Phys. Rev. A 1985, 1985, 1695-1697.
39. Hoover, W. G., Constant-Pressure Equations of Motion. Phys. Rev. A 1986, 34, 2499-2500.
40. Green, M. S., Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids. J. Chem. Phys. 1954, 22, 398-413.
41. Kubo, R., Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570-586.
42. Sani, E.; Barison, S.; Pagura, C.; Mercatelli, L.; Sansoni, P.; Fontani, F.; Jafrancesco, D.; Francini, F., Carbon Nanohorns-based Nanofluids as Direct Sunlight Absorbers. Opt. Express 2010, 18, 5179-5187.
43. Sani, E.; Mercatelli, L.; Barison, S.; Pagura, C.; Agresti, F.; Colla, L.; Sansoni, P., Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol. Energ. Mat. Sol. C. 2011, 95, 2994-3000.
44. ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. 2012; Vol. G173-03.
45. Paul, G.; Chopkar, M.; Manna, I.; Das, P. K., Techniques for measuring the thermal conductivity of nanofluids: A review. Renew. Sust. Energ. Rev. 2010, 14, 1913-1924.
46. Hammerschmidt, U.; Meier, V., New Transient Hot-Bridge Sensor to Measure Thermal Conductivity, Thermal Diffusivity, and Volumetric Specific Heat. Int. J. Thermophys. 2006, 27, 840-864.
47. Hentschke, R., On the Specific Heat Capacity Enhancement in Nanofluids. Nanoscale Res. Lett. 2016, 11, 88, 1-11.
48. Yu, W.; Choi, S. U. S., An Effective Thermal Conductivity Model of Nanofluids with a Cubical Arrangement of Spherical Particles. J. Nanosci. Nanotechnol. 2005, 5, 580-586.
49. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. I. 1st ed.; Clarendon Press: Oxford, UK, 1873.
50. Hamilton, R. L.; Crosser, O. K., Thermal Conductivity of Heterogeneous Two-component Systems. Ind. Eng. Chem. Fundamentals 1962, 1, 187-191.
51. Yu, W.; Choi, S. U. S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J. Nanopart. Res. 2003, 5, 167-171.
52. Yu, W.; Choi, S. U. S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. J. Nanopart. Res. 2004, 6, 355-361.
53. Kalogirou, S. A., Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231-295.
54. Bellos, E.; Tzivanidis, C., Analytical Expression of Parabolic Trough Solar Collector Performance. Designs 2018, 2, 9, 1-17.
55. O'Keeffee, G. J.; Mitchell, S. L.; Myers, T. G.; Cregan, V., Modelling the Efficiency of a Nanofluid-based Direct Absorption Parabolic Trough Solar Collector. Sol. Energy 2018, 159, 44-54.
56. Raccurt, O.; Matino, F.; Disdier, A.; Braillon, J.; Stollo, A.; Bourdon, D.; Maccari, A., In air durability study of solar selective coating for parabolic trough technology. AIP Conf. Proc. 2017, 1850, 130010, 1-8.
57. Bergman, T. L.; Lavine, A. S.; Incropera, F. P.; Dewitt, D. P., Fundamentals of Heat and Mass Transfer. 7th ed.; John Wiley & Sons: New Jersey, USA, 2011.
58. Surblys, D.; Matsubara, H.; Kikugawa, G.; Ohara, T., Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys. Rev. E 2019, 99, 051301(R), 1-6.
59. Boone, P.; Babaei, H.; Wilmer, C. E., Heat Flux for Many-Body Interactions: Corrections to LAMMPS. J. Chem. Theory Comput. 2019, 15, 5579–5587.
60. Kondratyuk, N. D., Comparing different force fields by viscosity prediction for branched alkane at 0.1 and 400 MPa. J. Phys.: Conf. Ser. 2019, 1385, 012048, 1-6.