Insights into the mechanochemical synthesis of MOF-74Beamish-Cook, J., Shankland, K. ORCID: https://orcid.org/0000-0001-6566-0155, Murray, C. A. and Vaqueiro, P. ORCID: https://orcid.org/0000-0001-7545-6262 (2021) Insights into the mechanochemical synthesis of MOF-74. Crystal Growth & Design, 21 (5). pp. 3047-3055. ISSN 1528-7483
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1021/acs.cgd.1c00213 Abstract/SummaryMechanochemical synthesis has recently emerged as a scalable “green” approach for the preparation of MOFs, but current understanding of the underlying reaction mechanisms is limited. In this work, an investigation of the reaction pathway of the mechanochemical synthesis of MOF-74 from ZnO and 2,5-dihydroxyterephthalic acid (H4HDTA) using DMF as a liquid additive, is presented. The complex reaction pathway involves the formation of four short-lived intermediate phases, prior to the crystallisation of MOF-74. The crystal structures of three of these intermediates have been determined using a combination of single-crystal and powder X-ray diffraction methods and are described here. The initial stages of the reaction are very fast, with a DMF solvate of H4HDTA forming after only two minutes of milling. This is followed by the crystallisation, after only 4 minutes of milling, of a triclinic one-dimensional coordination polymer, Zn(H2DHTA)(DMF)2(H2O)2, which converts into a monoclinic polymorph on additional milling. Highly-crystalline MOF-74 appears after prolonged milling, for at least 70 minutes.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |