Accessibility navigation

Accelerating radiation computations for dynamical models with targeted machine learning and code optimization

Ukkonen, P., Pincus, R., Hogan, R. J., Pagh Nielsen, K. and Kaas, E. (2020) Accelerating radiation computations for dynamical models with targeted machine learning and code optimization. Journal of Advances in Modeling Earth Systems, 12 (12). e2020MS002226. ISSN 1942-2466

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1029/2020MS002226


Atmospheric radiation is the main driver of weather and climate, yet due to a complicated absorption spectrum, the precise treatment of radiative transfer in numerical weather and climate models is computationally unfeasible. Radiation parameterizations need to maximize computational efficiency as well as accuracy, and for predicting the future climate many greenhouse gases need to be included. In this work, neural networks (NNs) were developed to replace the gas optics computations in a modern radiation scheme (RTE+RRTMGP) by using carefully constructed models and training data. The NNs, implemented in Fortran and utilizing BLAS for batched inference, are faster by a factor of 1–6, depending on the software and hardware platforms. We combined the accelerated gas optics with a refactored radiative transfer solver, resulting in clear‐sky longwave (shortwave) fluxes being 3.5 (1.8) faster to compute on an Intel platform. The accuracy, evaluated with benchmark line‐by‐line computations across a large range of atmospheric conditions, is very similar to the original scheme with errors in heating rates and top‐of‐atmosphere radiative forcings typically below 0.1 K day−1 and 0.5 W m−2, respectively. These results show that targeted machine learning, code restructuring techniques, and the use of numerical libraries can yield material gains in efficiency while retaining accuracy.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:98058
Publisher:American Geophysical Union


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation