1. Seko, A.; Hayashi, H.; Nakayama, K.; Takahashi, A.; Tanaka, I. Representation of compounds for machine-learning prediction of physical properties. Physical Review B 2017, 95 (14), 144110.
2. Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Physical Review Letters 2018, 120 (14), 145301.
3. Hong, Y.; Hou, B.; Jiang, H.; Zhang, J. Machine learning and artificial neural network accelerated computational discoveries in materials science. WIREs Computational Molecular Science 2020, 10 (3), e1450.
4. Agrawal, A.; Choudhary, A. Deep materials informatics: Applications of deep learning in materials science. MRS Communications 2019, 9 (3), 779-792.
5. Himanen, L.; Jäger, M. O. J.; Morooka, E. V.; Federici Canova, F.; Ranawat, Y. S.; Gao, D. Z.; Rinke, P.; Foster, A. S. DScribe: Library of descriptors for machine learning in materials science. Computer Physics Communications 2020, 247, 106949.
6. Schneider, G. Virtual screening: an endless staircase? Nature Reviews Drug Discovery 2010, 9 (4), 273-276.
7. Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Physical Review Letters 2012, 108 (5), 058301.
8. Faber, F.; Lindmaa, A.; von Lilienfeld, O. A.; Armiento, R. Crystal structure representations for machine learning models of formation energies. International Journal of Quantum Chemistry 2015, 115 (16), 1094-1101.
9. Sanchez, J. M.; Ducastelle, F.; Gratias, D. Generalized cluster description of multicomponent systems. Physica A: Statistical Mechanics and its Applications 1984, 128 (1), 334-350.
10. Nguyen, A. H.; Rosenbrock, C. W.; Reese, C. S.; Hart, G. L. W. Robustness of the cluster expansion: Assessing the roles of relaxation and numerical error. Physical Review B 2017, 96 (1), 014107.
11. Grau-Crespo, R.; Waghmare, U. V. Simulation of Crystals with Chemical Disorder at Lattice Sites. In Molecular Modeling for the Design of Novel Performance Chemicals and Materials, Rai, B., Ed. 2012; p 303.
12. Rosenbrock, C. W.; Gubaev, K.; Shapeev, A. V.; Pártay, L. B.; Bernstein, N.; Csányi, G.; Hart, G. L. W. Machine-learned interatomic potentials for alloys and alloy phase diagrams. npj Computational Materials 2021, 7 (1), 24.
13. Natarajan, A. R.; Van der Ven, A. Machine-learning the configurational energy of multicomponent crystalline solids. npj Computational Materials 2018, 4 (1), 1-7.
14. Roessler, D. M.; Walker, W. C. Electronic Spectrum and Ultraviolet Optical Properties of Crystalline MgO. Physical Review 1967, 159 (3), 733-738.
15. Srikant, V.; Clarke, D. R. On the optical band gap of zinc oxide. Journal of Applied Physics 1998, 83 (10), 5447-5451.
16. Sharma, A.; Narayan, J.; Muth, J.; Teng, C.; Jin, C.; Kvit, A.; Kolbas, R. M.; Holland, O. Optical and structural properties of epitaxial MgxZn1− xO alloys. Applied Physics Letters 1999, 75 (21), 3327-3329.
17. Choopun, S.; Vispute, R.; Yang, W.; Sharma, R.; Venkatesan, T.; Shen, v. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1− xO alloy films. Applied Physics Letters 2002, 80 (9), 1529-1531.
18. Han, S.; Zhang, J.; Zhang, Z.; Zhao, Y.; Wang, L.; Zheng, J.; Yao, B.; Zhao, D.; Shen, D. Mg0.58Zn0.42O Thin Films on MgO Substrates with MgO Buffer Layer. ACS Applied Materials & Interfaces 2010, 2 (7), 1918-1921.
19. Onuma, T.; Ono, M.; Ishii, K.; Kaneko, K.; Yamaguchi, T.; Fujita, S.; Honda, T. Impact of local arrangement of Mg and Zn atoms in rocksalt-structured MgxZn1−xO alloys on bandgap and deep UV cathodoluminescence peak energies. Applied Physics Letters 2018, 113 (6), 061903.
20. Sasaki, S.; Fujino, K.; Tak; Eacute; Uchi, Y. X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms. Proceedings of the Japan Academy, Series B 1979, 55 (2), 43-48.
21. Albertsson, J.; Abrahams, S. C.; Kvick, Å. Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallographica Section B 1989, 45 (1), 34-40.
22. Grau-Crespo, R.; Hamad, S.; Catlow, C. R. A.; Leeuw, N. H. d. Symmetry-adapted configurational modelling of fractional site occupancy in solids. Journal of Physics: Condensed Matter 2007, 19 (25), 256201.
23. Okhotnikov, K.; Charpentier, T.; Cadars, S. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. Journal of Cheminformatics 2016, 8 (1), 17.
24. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169-11186.
25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77 (18), 3865-3868.
26. Blochl, P. E. Projector Augmented-Wave Method. Physical Review B 1994, 50 (24), 17953-17979.
27. Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775.
28. Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics 2004, 121 (3), 1187-1192.
29. Lentz, L. C.; Kolpak, A. M. Predicting HSE band gaps from PBE charge densities via neural network functionals. Journal of Physics: Condensed Matter 2020, 32 (15), 155901.
30. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016; pp 265– 283.
31. Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science 2013, 68, 314-319.
32. Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N. E. R.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M. Matminer: An open source toolkit for materials data mining. Computational Materials Science 2018, 152 (C).
33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011.
34. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological) 1996, 58 (1), 267-288.
35. Chollet, F. Keras: The python deep learning library. https://github.com/fchollet/keras.
36. Sanati, M.; Hart, G. L.; Zunger, A. Ordering tendencies in octahedral MgO-ZnO alloys. Physical Review B 2003, 68 (15), 155210.
37. Yin, W.-J.; Dai, L.; Zhang, L.; Yang, R.; Li, L.; Guo, T.; Yan, Y. Stability, transparency, and conductivity of MgxZn1−xO and CdxZn1−xO: Designing optimum transparency conductive oxides. Journal of Applied Physics 2014, 115 (2), 023707.