Accessibility navigation


Proteornics analysis unravels the functional repertoire of coronavirus nonstructural protein 3

Neuman, B. W., Joseph, J. S., Saikatendu, K. S., Serrano, P., Chatterjee, A., Johnson, M. A., Liao, L., Klaus, J. P., Yates, J. R., Wuethrich, K., Stevens, R. C., Buchmeier, M. J. and Kuhn, P. (2008) Proteornics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. Journal of Virology, 82 (11). pp. 5279-5294. ISSN 0022-538X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1128/jvi.02631-07

Abstract/Summary

Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructurall protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences
ID Code:9860
Uncontrolled Keywords:RESPIRATORY SYNDROME-CORONAVIRUS, MOUSE HEPATITIS-VIRUS, PAPAIN-LIKE, PROTEASE, VIRION-ASSOCIATED PROTEIN, VIRAL STRUCTURAL PROTEIN, N-TERMINAL DOMAIN, NUCLEOCAPSID PROTEIN, SARS-CORONAVIRUS, IDENTIFICATION TECHNOLOGY, DEUBIQUITINATING ENZYME

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation