Accessibility navigation

Assessing regional‐scale variability in deforestation and forest degradation rates in a tropical biodiversity hotspot

Yesuf, G. ORCID:, Brown, K. A. and Walford, N. (2019) Assessing regional‐scale variability in deforestation and forest degradation rates in a tropical biodiversity hotspot. Remote Sensing in Ecology and Conservation, 5 (4). pp. 346-359. ISSN 2056-3485

Text (Open Access) - Published Version
· Available under License Creative Commons Attribution Non-commercial.
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/rse2.110


Deforestation and forest degradation are major drivers of global environmental change and tropical forests are subjected to unprecedented pressures from both. For most tropical zones, deforestation rates are averaged across entire countries, often without highlighting regional differentiation. There are also very few estimates of forest degradation, either averaged or localized for the tropics. We quantified regional and country-wide changes in deforestation and forest degradation rates for Madagascar from Landsat temporal data (in two intervals, 1994–2002 and 2002–2014). To our knowledge, this is the first country-wide estimate of forest degradation for Madagascar. We also performed an intensity analysis to categorize the magnitude and speed of transitions between forest, vegetation matrix, cultivated land and exposed surface. We found significant regional heterogeneity in deforestation and forest degradation. Deforestation rates decreased annually in lowland evergreen moist forest by −0.24% and in all other vegetation zones. Forest degradation rates had annual increases in the same period in lowland evergreen moist forest (0.09%), littoral forest (0.06%) but decreased in medium altitude moist evergreen forest (−0.25%), dry deciduous forest (−0.23%) and scelrophyllous woodland (−0.61%) in the same period. Despite these regional differences, higher rates of deforestation and forest degradation were consistently driven by rapid and large-sized conversions of largely intact forest to cultivated lands and exposed surfaces, most of which occurred between 1994 and 2002. These results suggest that while targeted conservation projects may have reduced forest degradation rates in some areas (e.g. medium altitude moist evergreen forest), the drivers of land cover change remain intense in relatively neglected regions. We advocate a more balanced approach to future conservation initiatives, one recognizing that deforestation and forest degradation, particularly in tropical Africa, are often driven by region-specific conditions and therefore require conservation policies tailored for local conditions.

Item Type:Article
Divisions:No Reading authors. Back catalogue items
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
ID Code:99054


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation